15. M modeling#

15.1. Characteristics of modeling#

Flexion-shear coupling in the plane.

_images/1000020000000131000000F1568056C23582F307.png

Figure 15.1-a: mesh

Modeling: DKTG. \(L=1.0m\).

Boundary conditions (see figure below):

_images/10000200000002A9000001237C4BFB344F7F3898.png

Figure 15.1-b: Boundary conditions

  • we impose an embedding in \({A}_{1}\), and:

  • \({u}_{x}={D}_{0}\cdot y,{u}_{y}=0\) on edge \({A}_{1}-{A}_{3}\), \({u}_{x}=0,{u}_{y}={D}_{0}\cdot x\) and \(\mathrm{DRY}=0.0\) on edge \({A}_{1}-{A}_{2}\)

  • \({u}_{x}={D}_{0}\cdot y,{u}_{y}={D}_{0}\cdot L\) and DRY = \({R}_{0}\) × \(f(t)\) on edge \({A}_{2}-{A}_{4}\), \({u}_{x}={D}_{0}\cdot L,{u}_{y}={D}_{0}\cdot x\) on edge \({A}_{3}-{A}_{4}\),

where \({D}_{0}=3.3{10}^{-3}\cdot f(t)\), \({R}_{0}=3.0{10}^{-2}\), and \(f(t)\) represent the magnitude of cyclic loading as a function of the (pseudo-time) parameter \(t\), defined as:

_images/10000000000001F8000001201AA96929C8D1ABF2.png

15.2. Characteristics of the mesh#

Number of knots: 121.

Number of stitches: 200 TRIA3; 40 SEG2.

15.3. Tested sizes and results#

The results obtained by modeling GLRC_DM are evaluated by non-regression tests at various times:

Identification

Reference type

Reference values

tolerance

At t=1,0

Movement \(\mathrm{DX}\) in \(\mathrm{A2}\)

NON_REGRESSION

0

1 10-6

Move \(\mathrm{DZ}\) en \(\mathrm{A2}\)

NON_REGRESSION

-0.0150132720825

1 10-4

Effort \({N}_{\mathrm{yy}}\) in \(\mathrm{A2}\)

NON_REGRESSION

336025.268865

1 10-4

Damage variable \(\mathrm{d1}\) in \(\mathrm{A1}\)

NON_REGRESSION

56.9559592676

1 10-4

Damage variable \(\mathrm{d2}\) in \(\mathrm{A1}\)

NON_REGRESSION

59.5462291219

1 10-4

To \(t=\mathrm{2,8}\)

Movement \(\mathrm{DX}\) in \(\mathrm{A4}\)

NON_REGRESSION

-0.00264

1 10-4

Movement \(\mathrm{DZ}\) en \(\mathrm{A4}\)

NON_REGRESSION

0.010135582881

1 10-4

Effort \({N}_{\mathrm{yy}}\) in \(\mathrm{A4}\)

NON_REGRESSION

-268829.505848

1 10-4

Damage variable \(\mathrm{d1}\) in \(\mathit{A1}\)

NON_REGRESSION

56.9559592676

1 10-4

Damage variable \(\mathit{d2}\) in \(\mathit{A1}\)

NON_REGRESSION

59.5462291219

1 10-4

To \(t=\mathrm{3,0}\)

Damage variable \(\mathit{d1}\) in \(\mathit{A1}\)

NON_REGRESSION

59.4924066054

1 10-4

Damage variable \(\mathit{d2}\) in \(\mathit{A1}\)

NON_REGRESSION

59.5462291219

1 10-4

Comparative diagrams multilayer model-modell **** GLRC_DM - model**** DHRC **of the shear force bending moment:math:`{N}_{mathit{xy}}`**as a function of the distortion: **

_images/10000000000001F800000120AC7034389DF73B98.png

Comparative diagrams multi-layer model GLRC_DM - model- model** DHRC of the bending moment \({M}_{\mathit{yy}}\) as a function of rotation:

_images/100000000000020100000120910198B14934C1B7.png