7. E modeling#

7.1. Characteristics of modeling#

Flexion-shear coupling in the plane.

_images/1000020000000131000000F1568056C23582F307.png

Figure 7.1-a: mesh

Modeling: DKTG. \(L=1.0m\).

Boundary conditions (see figure below):

_images/10000200000002A9000001237C4BFB344F7F3898.png

Figure 7.1-b: Boundary conditions

  • we impose an embedding in \({A}_{1}\), and

  • \({u}_{x}={D}_{0}\cdot y,{u}_{y}=0\) on edge \({A}_{1}-{A}_{3}\), \({u}_{x}=0,{u}_{y}={D}_{0}\cdot x\) and \(\mathrm{DRY}=0.0\) on edge \({A}_{1}-{A}_{2}\)

  • \({u}_{x}={D}_{0}\cdot y,{u}_{y}={D}_{0}\cdot L\) and DRY = \({R}_{0}\) × \(f(t)\) on edge \({A}_{2}-{A}_{4}\), \({u}_{x}={D}_{0}\cdot L,{u}_{y}={D}_{0}\cdot x\) on edge \({A}_{3}-{A}_{4}\),

where \({D}_{0}=1.1{10}^{-4}\cdot f(t)\), \({R}_{0}=6.0{10}^{-3}\), and \(f(t)\) represent the magnitude of cyclic loading as a function of the (pseudo-time) parameter \(t\), defined as:

_images/10000000000001F8000001201AA96929C8D1ABF2.png

7.2. Characteristics of the mesh#

Number of knots: 121.

Number of stitches: 200 TRIA3; 40 SEG2.

7.3. Tested sizes and results#

The results obtained by modeling GLRC_DM are evaluated by non-regression tests at various times:

Identification

Reference Type

Reference Values

Tolerance

At t=1,0

Movement \(\mathrm{DX}\) in \(\mathrm{A2}\)

NON_REGRESSION

0

1 10-6

Move \(\mathrm{DZ}\) in \(\mathrm{A2}\)

NON_REGRESSION

-3.0 10-3

1 10-4

Effort \({N}_{\mathrm{yy}}\) in \(\mathrm{A2}\)

NON_REGRESSION

15058.8134864

1 10-4

Damage variable \(\mathrm{d1}\) in \(\mathrm{A1}\)

NON_REGRESSION

1.178108

1 10-4

Damage variable \(\mathrm{d2}\) in \(\mathrm{A1}\)

NON_REGRESSION

0.0

1 10-4

To \(t=\mathrm{2,8}\)

Move \(\mathrm{DX}\) in \(\mathrm{A4}\)

NON_REGRESSION

-8.8 10-5

1 10-4

Move \(\mathrm{DZ}\) in \(\mathrm{A4}\)

NON_REGRESSION

1.9504378 10-3

1 10-4

Effort \({N}_{\mathrm{yy}}\) in \(\mathrm{A4}\)

NON_REGRESSION

-12047.0496585

1 10-4

Damage variable \(\mathrm{d1}\) in \(\mathrm{A1}\)

NON_REGRESSION

1.178108

1 10-4

Damage variable \(\mathrm{d2}\) in \(\mathrm{A1}\)

NON_REGRESSION

0.75196363

1 10-4

To \(t=\mathrm{3,0}\)

Damage variable \(\mathrm{d1}\) in \(\mathrm{A1}\)

NON_REGRESSION

1.178108

1 10-4

Damage variable \(\mathrm{d2}\) in \(\mathrm{A1}\)

NON_REGRESSION

1.162571

1 10-4

Comparative diagrams multilayer model-model GLRC_DMmoment flexing \({M}_{\mathit{yy}}\) as a function of time:

_images/100000000000020100000120750D61E2D006F596.png

Comparative diagrams multilayer model-model GLRC_DMeffort cutting edge \({N}_{\mathit{xy}}\) as a function of time:

_images/10000000000001F8000001202ECF3E416399CEA8.png

Comparative diagrams multi-layer model GLRC_DMde the shear force bending moment \({N}_{\mathit{xy}}\) as a function of the distortion:

_images/10000000000001F80000012016266EE95B19F831.png

Comparative diagrams multilayer model-model GLRC_DMdu bending moment \({M}_{\mathit{yy}}\) as a function of rotation:

_images/100000000000020100000120C9411B30A41011B8.png

Diagram of the evolution of the damage of model GLRC_DM (\({d}_{1},{d}_{2}\)) over time:

_images/100000000000020100000120F47B63C6C1754EAF.png

We check, cf. [R7.01.32], that with the data from the test case, we have: \({k}_{0}=\mathrm{9,81138260345866}J/{m}^{2}\), hence the surface densities of energy dissipated:

Instant

\({d}_{1}\)

\({d}_{2}\)

energy dissipated \(J/{m}^{2}\)

\(t=\mathrm{2,0}s\)

1.1781

0.0

11.5589

\(t=\mathrm{4,0}s\)

1.178

1.161

1.1626

22.9653