20. J modeling results#
20.1. Tested values#
Identification |
Reference |
Type |
Tolerance |
Loading 1 |
|||
Normal contact force |
1.200E+04 N |
ANALYTIQUE |
|
Tangential contact force |
0 N |
ANALYTIQUE |
|
DX (point A) |
1.5E-3mm |
ANALYTIQUE |
|
DY (point A) |
—2.598E-3 mm |
ANALYTIQUE |
|
DX (point B) |
1.5E-3 mm |
ANALYTIQUE |
|
DY (point B) |
—2.598E-3 mm |
ANALYTIQUE |
|
Loading 2 |
|||
Normal contact force |
1.200E+04 N |
ANALYTIQUE |
|
Tangential contact force |
—3.564E+03N |
ANALYTIQUE |
|
DX (point A) |
0.0234 mm |
NON_REGRESSION |
|
DY (point A) |
0.0122 mm |
NON_REGRESSION |
|
DX (point B) |
4.032E-03 mm |
NON_REGRESSION |
|
DY (point B) |
-4.747 mm |
NON_REGRESSION |
|
Loading 3 |
|||
Normal contact force |
1.200E+04 N |
ANALYTIQUE |
|
Tangential contact force |
—3,624E+03N |
ANALYTIQUE |
|
DX (point A) |
2.598 mm |
ANALYTIQUE |
|
DY (point A) |
1.5 mm |
ANALYTIQUE |
|
DX (point B) |
2.598mm |
ANALYTIQUE |
|
DY (point B) |
1.5 mm |
ANALYTIQUE |
|
The analytical values for load 1 are obtained by using the fact that the joint is elastic thanks to the penalization parameter. It is this value that is projected into the global frame of reference.
\({D}_{\mathrm{norm}}={P}_{\mathrm{norm}}/{K}_{n}=300/{10}^{5}=3\cdot {10}^{-3}\); \(\mathrm{DX}={D}_{\mathrm{norm}}\mathrm{cos}(\pi /6);\mathrm{DY}={D}_{\mathrm{norm}}\mathrm{sin}(\pi /6)\)