11. Modeling I#

11.1. Characteristics of modeling#

2 POU_D_TGM elements per section type. There are therefore 2 groups of elements each comprising 2 elements.

Group

\(\mathrm{GR1}\):

rectangular section

\(\mathrm{GC1}\):

circular section

Simple traction with work hardening

on \(\mathrm{GR1}\) and \(\mathrm{GC1}\) (ECRO_LINE)

Pure bending without work hardening

on \(\mathrm{GR1}\) and \(\mathrm{GC1}\) without work hardening

11.2. Characteristics of the mesh#

  • Beam mesh

\(2\times 2\) elements POU_D_TGM

  • Meshing the sections

_images/100002000000012C00000119D510D3CE2C63BC04.png

111 knots, 188 TRIA3

_images/10000200000001EA000000FCD70060B38983D1F0.png

231 knots, 200 QUAD4

11.3. note#

The particularity of modeling \(L\) is to test the functioning of DYNA_NON_LINE in the calculation of the quasistatic traction of a beam modeled in POU_D_TGM. The particularity of this type of modeling is that it reveals zero pivots on the rows of the mass matrix corresponding to the degrees of freedom of warping. In this case, the initialization of the NEWMARK diagram is no longer done by inverting the mass matrix, which is singular, but by setting the initial acceleration to zero.

11.4. Tested sizes and results#

11.4.1. Tested values#

  • Single pull (with \({\mathrm{DX}}^{e}=0.75E-03\))

\({\mathrm{DX}}_{(B)}\)

Order Number

GROUP_MA

NOEUD

Identification

Reference Type

Reference

Tolerance

\(2{\mathrm{DX}}^{e}\)

11

GR1

R3

EFGE_ELNO

N

ANALYTIQUE

\(3.E+06\)

\(0.10\text{\%}\)

\(3{\mathrm{DX}}^{e}\)

21

GR1

R3

EFGE_ELNO

N

ANALYTIQUE

\(3.E+06\)

\(0.10\text{\%}\)

\(2{\mathrm{DX}}^{e}\)

11

GC1

C3

EFGE_ELNO

N

ANALYTIQUE

\(4.82E+06\)

\(2.5\text{\%}\)

\(3{\mathrm{DX}}^{e}\)

21

GC1

C3

EFGE_ELNO

N

ANALYTIQUE

\(4.87E+06\)

\(2.5\text{\%}\)

\(3{\mathrm{DX}}^{e}\)

21

GC1

C3

DEGE_ELNO

EPXX

ANALYTIQUE

\(2.25E\mathrm{-}03\)

\(0.10\text{\%}\)

\({\mathrm{DX}}_{(B)}\)

Order Number

MAILLE

Point

Sub-point

Identification

Reference Type

Reference

Tolerance

\(3{\mathrm{DX}}^{e}\)

21

GR1

1

1

VARI_ELGA

V1

ANALYTIQUE

\(1.5E\mathrm{-}03\)

\(20.0\text{\%}\)

\(3{\mathrm{DX}}^{e}\)

21

GC1

1

1

VARI_ELGA

V1

ANALYTIQUE

\(1.5E\mathrm{-}03\)

\(1.5\text{\%}\)

11.4.2. Observations#

Note that the traction results from DYNA_NON_LINE are identical to those given by STAT_NON_LINE.