9. G modeling#

9.1. Characteristics of modeling#

Loading is a combination of traction — compression and flexure.

_images/1000020000000189000000EB5E0D602A193B4B87.png

Figure 9.1-a : mesh and boundary conditions

Modeling: DKTG

Boundary conditions: Traction — Compression and Flexion coupling:

  • \(\mathrm{DX}=0.0\) and \(\mathrm{DRY}=0.0\) on the \({A}_{1}\mathrm{-}{A}_{3}\) edge

  • \(\mathrm{DX}={U}_{0}\times f(t)\) and \(\mathrm{DRY}={R}_{0}\times f(t)\) on the \({A}_{2}-{A}_{4}\) edge,

where \({U}_{0}\mathrm{=}1.\times {10}^{\mathrm{-}3}m\), \({R}_{0}\mathrm{=}3.\times {10}^{\mathrm{-}2}\mathit{rad}\), and \(f(t)\) is the magnitude of the cyclic loading as a function of the (pseudo-time) parameter \(t\).

The following load is considered:

The same \(f\) loading function for membrane and flexure:

_images/10000000000001F8000001201AA96929C8D1ABF2.png

Figure 9.1-b : loading function

9.2. Characteristics of the mesh#

Number of knots: 9.

Number of stitches: 8 TRIA3; 8 SEG2.

9.3. Tested sizes and results#

We compare the forces along the axis \(\mathrm{Ox}\) in \(\mathit{A1}\mathrm{-}\mathit{A3}\), the displacements along the axis \(\mathrm{Oy}\) in \(\mathit{A4}\), the moments along the axis \(\mathrm{Oy}\) in \(\mathit{A1}\mathrm{-}\mathit{A3}\) and the rotations along the axis \(\mathrm{Ox}\) en \(\mathit{A4}\) obtained by the multilayer modeling (reference) and by those based on the model ENDO_ISOT_BETON, in in terms of relative differences; the tolerance is taken as an absolute value based on these relative differences:

Identification

Reference type

Reference value

Tolerance

FLEXION POSITIVE - ELASTIQUE \(t=\mathrm{0,25}\)

Relative difference \(\mathit{MY}\)

NON_REGRESSION

1 10-6

Relative difference \(\mathit{DRX}\)

NON_REGRESSION

1 10-6

Relative difference \(\mathit{FX}\)

NON_REGRESSION

1 10-6

Relative difference \(\mathit{DY}\)

NON_REGRESSION

1 10-6

FLEXION POSITIVE - ENDOMMAGEMENT \(t=\mathrm{1,0}\)

Relative difference \(\mathit{MY}\)

NON_REGRESSION

1 10-6

Relative difference \(\mathit{FX}\)

NON_REGRESSION

1 10-6

FLEXION POSITIVE - DECHARGEMENT \(t=\mathrm{1,5}\)

Relative difference \(\mathit{MY}\)

NON_REGRESSION

1 10-6

Relative difference \(\mathit{FX}\)

NON_REGRESSION

1 10-6

FLEXION NEGATIVE — ELASTIQUE \(t=\mathrm{2,25}\)

Relative difference \(\mathit{MY}\)

NON_REGRESSION

1 10-6

Relative difference \(\mathit{FX}\)

NON_REGRESSION

1 10-6

FLEXION NEGATIVE - ENDOMMAGEMENT \(t=\mathrm{3,0}\)

Relative difference \(\mathit{MY}\)

NON_REGRESSION

1 10-6

Relative difference \(\mathit{FX}\)

NON_REGRESSION

1 10-6

FLEXION NEGATIVE - **** DECHARGEMENT ** \(t=\mathrm{3,5}\)

Relative difference \(\mathit{MY}\)

NON_REGRESSION

1 10-6

Relative difference \(\mathit{FX}\)

NON_REGRESSION

1 10-6

_images/10000201000002DC0000021F48A439D54A05F1F9.png

Force comparative graphs \(\mathrm{FX}\) — displacement \(\mathrm{DX}\) for load \(f\) :

Comparative moment graphs \(\mathrm{MY}\) **— rotation:math:`mathrm{DRY}`**for loading**:math:`f`**: **

_images/10000201000002CD0000021F04D981AD7BB92418.png

Comparative graphs displacement \(\mathrm{DY}\) (due to the Poisson effect) as a function of time:

_images/10000201000002E30000023567B941E3D007A585.png

Comparative rotation graphs \(\mathit{DRX}\) (due to the Poisson effect) as a function of time:

_images/10000201000002EC000002356409F4341D846AB7.png

9.4. notes#

The test case carried out here aims to test model BETON_REGLE_PRsous with stresses that are significant enough for steels to effectively recover their stiffness.

The behavior is similar in bending and traction for the laws BETON_REGLE_PRet ENDO_ISOT_BETON under load: the differences appear for large loads due to the difference in behavior under compression.

The landfill response is not taken into account by law BETON_REGLE_PR (elastic response).

Rotation \(\mathrm{DRX}\) and displacement \(\mathit{DY}\) are zero with law BETON_REGLE_PR because the Poisson effect is not taken into account.