4. B modeling#

4.1. Characteristics of modeling#

The loading is of the pure alternating bending type.

_images/10000000000001A9000001269D6B8497D226D3CE.png

Figure 4.1-a : mesh and boundary conditions

Modeling: DKT

Boundary conditions:

  • \(\mathrm{DRY}=0.0\) on the \({A}_{1}-{A}_{3}\) ridge

  • \(\mathrm{DRY}={R}_{0}\times f(t)\) on the \({A}_{2}-{A}_{4}\) edge,

where \({R}_{0}=6\times {10}^{-3}\) and \(f(t)\) is the amplitude of the cyclic loading as a function of the (pseudo-time) parameter \(t\), to properly verify the model, we consider three loading functions as:

_images/10000000000001F8000001201AA96929C8D1ABF2.png

Figure 4.1-b : f negative flexion, then positive flexing

_images/10000000000001F800000120F7A19CE7F7EAE366.png

Figure 4.1-c : f positive flexion, then negative flexing

_images/10000000000001FB00000120D2C7311DCD9F963A.png

Figure 4.1-d : d two cycles of alternating flexure

Note: the extreme deformation of steels is: \(2.4\times {10}^{-3}\), i.e. below the transition to plasticity of the steels. Integration increment: \(0.05s\) .

4.2. Characteristics of the mesh#

Number of knots: 9. Number of stitches: 8 TRIA3.

4.3. Tested quantities and results for the f1 loading function#

We compare the sum of the moments along the axis \(\mathrm{Oy}\) in \(\mathit{A1}\mathrm{-}\mathit{A3}\) and the rotations along the axis \(\mathrm{Ox}\) in \(\mathit{A4}\) obtained by the multilayer modeling with the ENDO_ISOT_BETON law and by the one based on the BETON_REGLE_PR law, in terms of relative differences; the tolerance is taken as an absolute value on these relative differences; the tolerance is taken as an absolute value on these relative differences.

Identification

Reference type

Reference value

Tolerance

FLEXION NEG - PHASE CHAR. ELAS . \(t=\mathrm{0,25}\)

Relative moment difference \({M}_{\mathrm{yy}}\)

AUTRE_ASTER

0

3 10-2

Relative difference in rotations \(\mathrm{DRX}\)

NON_REGRESSION

1 10-6

FLEXION NEG - PHASE CHAR. ENDO . \(t=\mathrm{1,0}\)

Relative moment difference \({M}_{\mathrm{yy}}\)

AUTRE_ASTER

0

1 10-2

Relative difference in rotations \(\mathrm{DRX}\)

NON_REGRESSION

1 10-6

FLEXION NEG - PHASE DECHAR. ELAS . \(t=\mathrm{1,5}\)

Relative moment difference \({M}_{\mathrm{yy}}\)

AUTRE_ASTER

0

6 10-1

Relative difference in rotations DRX

NON_REGRESSION

1 10-6

FLEXION POS. - PHASE CHAR. ELAS . \(t=\mathrm{2,25}\)

Relative moment difference \({M}_{\mathrm{yy}}\)

AUTRE_ASTER

0

3 10-2

Relative difference in rotations \(\mathrm{DRX}\)

NON_REGRESSION

1 10-6

FLEXION POS. - PHASE CHAR. ENDO . \(t=\mathrm{3,0}\)

Relative moment difference \({M}_{\mathrm{yy}}\)

AUTRE_ASTER

0

2 10-2

Relative difference in rotations \(\mathrm{DRX}\)

NON_REGRESSION

1 10-6

FLEXION POS. - PHASE DECHAR. ELAS. \(t=\mathrm{3,5}\)

Relative moment difference \({M}_{\mathrm{yy}}\)

AUTRE_ASTER

0

6 10-1

Relative difference in rotations \(\mathrm{DRX}\)

NON_REGRESSION

1 10-6

Comparative moment/rotation diagrams in cyclic bending for load \(\mathrm{f1}\) :

_images/10000201000002D2000002351644D27374A242D7.png

refill

(opposite bending)

Comparative graphs rotation \(\mathrm{DRX}\) (due to the Poisson effect) as a function of time for loading \(\mathrm{f1}\) :

_images/10000201000002ED000002351345ED56ACBE9458.png

4.4. Tested quantities and results for the f2 loading function#

We compare the moments along the \(\mathrm{Oy}\) axis in \(\mathit{A1}\mathrm{-}\mathit{A3}\) and the rotations along the \(\mathrm{Ox}\) en \(\mathit{A4}\) axis obtained by multilayer modeling with the ENDO_ISOT_BETON law and by that based on the BETON_REGLE_PR law, in terms of relative differences; some tolerances are taken in absolute value:

Identification

Reference type

Reference value

Tolerance

FLEXION NEG. - PHASE CHAR. ELAS . \(t=\mathrm{0,25}\)

Relative moment difference \({M}_{\mathrm{yy}}\)

AUTRE_ASTER

0

3 10-2

Relative difference in rotations \(\mathrm{DRX}\)

NON_REGRESSION

1 10-6

FLEXION NEG. - PHASE CHAR. ENDO . \(t=\mathrm{1,0}\)

Relative moment difference \({M}_{\mathrm{yy}}\)

AUTRE_ASTER

0

1 10-2

Relative difference in rotations \(\mathrm{DRX}\)

NON_REGRESSION

1 10-6

FLEXION NEG. - PHASE DECHAR. ELAS . \(t=\mathrm{1,5}\)

Relative moment difference \({M}_{\mathrm{yy}}\)

AUTRE_ASTER

0

6 10-1

Relative difference in rotations \(\mathrm{DRX}\)

NON_REGRESSION

1 10-6

FLEXION POS. - PHASE CHAR. ELAS . \(t=\mathrm{2,25}\)

Relative moment difference \({M}_{\mathrm{yy}}\)

AUTRE_ASTER

0

3 10-2

Relative difference in rotations \(\mathrm{DRX}\)

NON_REGRESSION

1 10-6

FLEXION POS. - PHASE CHAR. ENDO . \(t=\mathrm{3,0}\)

Relative moment difference \({M}_{\mathrm{yy}}\)

AUTRE_ASTER

0

2 10-2

Relative difference in rotations \(\mathrm{DRX}\)

NON_REGRESSION

1 10-6

FLEXION POS. - PHASE DECHAR. ELAS . \(t=\mathrm{3,5}\)

Relative moment difference \({M}_{\mathrm{yy}}\)

AUTRE_ASTER

0

6 10-1

Relative difference in rotations \(\mathrm{DRX}\)

NON_REGRESSION

1 10-6

It is verified that these results are identical to those obtained with load \(\mathrm{f1}\) (in the opposite direction).

4.5. Tested quantities and results for the f3 loading function#

We compare the moments along the \(\mathrm{Oy}\) axis in \(\mathit{A1}\mathrm{-}\mathit{A3}\) and the rotations along the \(\mathrm{Ox}\) axis in \(\mathit{A4}\) obtained by multilayer modeling with the ENDO_ISOT_BETON law and by the one based on the BETON_REGLE_PR law, in terms of relative differences:

Identification

Reference type

Reference value

Tolerance

FLEXION NEG. - PHASE CHAR. ELAS . \(t=\mathrm{4,25}\)

Relative moment difference \({M}_{\mathrm{yy}}\)

AUTRE_ASTER

0

7 10-1

Relative difference in rotations \(\mathrm{DRX}\)

NON_REGRESSION

1 10-6

FLEXION NEG. - PHASE CHAR. ENDO . \(t=\mathrm{5,0}\)

Relative moment difference \({M}_{\mathrm{yy}}\)

AUTRE_ASTER

0

3 10-2

Relative difference in rotations \(\mathrm{DRX}\)

NON_REGRESSION

1 10-6

FLEXION NEG. - PHASE DECHAR. ELAS . \(t=\mathrm{1,5}\)

Relative moment difference \({M}_{\mathrm{yy}}\)

AUTRE_ASTER

0

6 10-1

Relative difference in rotations \(\mathrm{DRX}\)

NON_REGRESSION

1 10-6

FLEXION POS. - PHASE CHAR. ELAS . \(t=\mathrm{2,25}\)

Relative moment difference \({M}_{\mathrm{yy}}\)

AUTRE_ASTER

0

3 10-2

Relative difference in rotations \(\mathrm{DRX}\)

NON_REGRESSION

1 10-6

FLEXION POS. - PHASE CHAR. ENDO . \(t=\mathrm{3,0}\)

Relative moment difference \({M}_{\mathrm{yy}}\)

AUTRE_ASTER

0

2 10-2

Relative difference in rotations \(\mathrm{DRX}\)

NON_REGRESSION

1 10-6

FLEXION POS. - PHASE DECHAR. ELAS . \(t=\mathrm{3,5}\)

Relative moment difference \({M}_{\mathit{yy}}\)

AUTRE_ASTER

0

6 10-1

Relative difference in rotations \(\mathit{DRX}\)

NON_REGRESSION

1 10-6

Comparative moment/rotation diagrams in cyclic bending for load \(\mathit{f3}\) :

_images/10000201000002D20000023508EEDDE4A5885D6F.png

Comparative graphs rotation \(\mathit{DRX}\) (due to the Poisson effect) as a function of time for loading \(\mathit{f3}\) :

_images/10000201000002E500000235D594B585489C5472.png

4.6. notes#

According to the previous curves, it can be seen that the multilayer model with law BETON_REGLE_PR represents the overall behavior of reinforced concrete under bending —+ in a satisfactory manner under load. However, in discharge, law BETON_REGLE_PR follows the same curve as the charge, unlike law ENDO_ISOT_BETON.

The Poisson effect is not modelled by law BETON_REGLE_PR, so we get zero rotation in the DRX direction.

We observe a symmetry of the response according to the chosen direction of load (flexure — and +) or the opposite case, depending on the load \(\mathit{f1}\) or \(\mathit{f2}\) for law BETON_REGLE_PR.