2. Benchmark solution#

2.1. Calculation method used for the reference solution#

(1) The reference solution is an analytical solution resulting from, for a circular crack with radius \(a\) in an infinite medium, subject to a uniform surface force \(\sigma\) inclined at an angle \(\alpha\) to the plane of the crack, the stress intensity factors for a point \(A\) placed on the crack front are equal to: ———————————————————————–

\({K}_{I}\mathrm{=}\frac{2}{\pi }\sigma ({\mathrm{sin}}^{2}\alpha )\sqrt{\pi a}\)

\({K}_{\mathit{II}}\mathrm{=}\frac{4}{\pi (2\mathrm{-}\nu )}\sigma (\mathrm{sin}\alpha \mathrm{cos}\alpha )\mathrm{cos}\omega \sqrt{\pi a}\)

\({K}_{\mathit{III}}\mathrm{=}\frac{4(1\mathrm{-}\nu )}{\pi (2\mathrm{-}\nu )}\sigma (\mathrm{sin}\alpha \mathrm{cos}\alpha )\mathrm{sin}\omega \sqrt{\pi a}\)

\(\omega\) being the angle characterizing the position of the point \(A\) on the circular background (see).

2.2. Benchmark results#

For the load under consideration and \(a\mathrm{=}\mathrm{2m}\), the gives the analytical values of SIFs along half of the crack bottom, for \(\omega\) between \(0°\) and \(180°\). These values are also shown on the.

_images/100000000000032400000182930E329A37432EB1.png

Figure 2.2-1: Reference values for SIFs

Angle \(\omega\) (°)

\({K}_{I}\) \((\mathit{Pa}\mathrm{.}\sqrt{M})\)

\({K}_{\mathit{II}}\) \((\mathit{Pa}\mathrm{.}\sqrt{M})\)

\({K}_{\mathit{III}}\) \((\mathit{Pa}\mathrm{.}\sqrt{M})\)

0

7,978E+05

9,387E+05

0.0E+05

0.0E+05

5

7,978E+05

9,351E+05

5,727E+05

5,727E+04

10

7,978E+05

9,244E+05

1,14E+05

1,14E+05

15

7,978E+05

9,067E+05

1,701E+05

1,701E+05

20

7,978E+05

8,821E+05

2,247E+05

2,247E+05

25

7,978E+05

8,507E+05

2,777E+05

2,777E+05

30

7,978E+05

8,129E+05

3,285E+05

3,285E+05

35

7,978E+05

7,689E+05

7,689E+05

3,769E+05

40

7,978E+05

7,191E+05

7,191E+05

4,224E+05

45

7,978E+05

6,638E+05

4,646E+05

4,646E+05

50

7,978E+05

6,034E+05

5,034E+05

5,034E+05

55

7,978E+05

5,384E+05

5,382E+05

5,382E+05

60

7,978E+05

4,693E+05

5,690E+05

4,693E+05

65

7,978E+05

3,967E+05

5,955E+05

5,955E+05

70

7,978E+05

3,211E+05

6,175E+05

6,175E+05

75

7,978E+05

2,430E+05

6,347E+05

6,347E+05

80

7,978E+05

1,630E+05

6,471E+05

6,471E+05

85

7,978E+05

8,181E+04

6,546E+05

90

7,978E+05

5,750E-11

6,571E+05

100

7,978E+05

-1,630E+05

6,471E+05

6,471E+05

110

7,978E+05

-3,211E+05

6,175E+05

6,175E+05

120

7,978E+05

-4,693E+05

5,690E+05

5,690E+05

130

7,978E+05

-6,034E+05

5,034E+05

5,034E+05

140

7,978E+05

-7,191E+05

4,224E+05

4,224E+05

150

7,978E+05

-8,129E+05

3,285E+05

3,285E+05

160

7,978E+05

-8,821E+05

2,247E+05

2,247E+05

170

7,978E+05

-9,244E+05

1,14E+05

1,14E+05

180

7,978E+05

-9,387E+05

8,050E-11

8,050E-11

Table 2.2-1: Reference values

2.3. Bibliographical references#

  1. TADA H., PARIS P., IRWIND G.: The stress analysis of cracks handbook, 3rd ed., 2000

  2. LORENTZ E., Effect of a free mesh of a cracked three-dimensional structure on the quality of the calculation of the energy restoration rate, CR-I20-2010-11, 2010