6. D modeling#

6.1. Characteristics of modeling#

In this modeling, the crack is meshed with Zcracks (case FEM). The mesh is free.

_images/1000000000000500000002F986D5EE6A7CCAF6E3.png _images/1000000000000500000002F9D70195A16A03FBC8.png

Figure 6.1-1: free mesh

_images/1000000000000500000002F9909F3D859FB6ACF5.png

Figure 6.1-2: Structure mesh

6.2. Characteristics of the mesh#

Number of knots: 19666

Number of meshes and type: 13697 TETRA10

Number of knots at the bottom of a crack: 83

The characteristic length of an element near the crack bottom is \(\mathrm{0,15}m\).

6.3. Tested sizes and results#

The theta field integration crowns for command CALC_G are:

\(\text{RINF}=\mathrm{0,06}m\) and \(\text{RSUP}=\mathrm{0,22}m\).

Three types of smoothing are chosen:

  • LEGENDREavec DEGRE =5 (by default)

  • LINEAIREavec a reduced number of points at the bottom of the crack (NB_POINT_FOND = 21)

  • LINEAIREavec the « hat » smoothing applied afterwards

To test the value of \({K}_{I}\) for all points at the bottom of the crack, we test the \(\mathit{min}\) and the \(\mathit{max}\) values along the bottom.

\({K}_{\mathit{II}}\) is tested only to the point where \(\omega \mathrm{=}0°\) (where \({K}_{\mathit{II}}\) is normally maximum).

\({K}_{\mathit{III}}\) is tested only to the point where \(\omega \mathrm{=}90°\) (where \({K}_{\mathit{III}}\) is normally maximum).

Theoretically, you should test the absolute value of \({K}_{\mathit{II}}\) and \({K}_{\mathit{III}}\) because the sign is arbitrary.

6.3.1. Values from CALC_G option K with Legendre smoothing#

The values are in \(\mathit{Pa}\mathrm{.}\sqrt{m}\).

Identification

Reference Type

Reference Value

% Tolerance

\(\mathit{max}({K}_{I})\)

“ANALYTIQUE”

7,978 105

10, 0%

\(\mathit{min}({K}_{I})\)

“ANALYTIQUE”

7,978 105

10, 0%

\({K}_{\mathit{II}}\) in \(\omega \mathrm{=}0°\)

“ANALYTIQUE”

9,386 105

10, 0%

\({K}_{\mathit{III}}\) in \(\omega \mathrm{=}90°\)

“ANALYTIQUE”

6,570 105

10, 0%

Values from CALC_G option K with a smoothing of LINEAIRE and a reduced number of points at the bottom of the crack ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~

The values are in \(\mathit{Pa}\mathrm{.}\sqrt{m}\).

Identification

Reference Type

Reference Value

% Tolerance

\(\mathit{max}({K}_{I})\)

“ANALYTIQUE”

7,978 105

10, 0%

\(\mathit{min}({K}_{I})\)

“ANALYTIQUE”

7,978 105

10, 0%

\({K}_{\mathit{II}}\) in \(\mathrm{\omega }=0°\)

“ANALYTIQUE”

9,386 105

10, 0%

\({K}_{\mathit{III}}\) in \(\mathrm{\omega }=90°\)

“ANALYTIQUE”

6,570 105

10, 0%

6.3.2. Values from CALC_G option K with a smoothing of LINEAIRE and the smoothing « hat »#

The values are in \(\mathit{Pa}\mathrm{.}\sqrt{m}\).

Identification

Reference Type

Reference Value

% Tolerance

\(\widehat{G}\) in \(\omega \mathrm{=}0°\)

“ANALYTIQUE”

6, 906

70%

\(\widehat{G}\) in \(\mathrm{\omega }=90°\)

“ANALYTIQUE”

5,703

6, 0%

\(\widehat{{K}_{I}}\) in \(\omega \mathrm{=}0°\)

“ANALYTIQUE”

7,978 105

11, 0%

\(\widehat{{K}_{I}}\) in \(\mathrm{\omega }=90°\)

“ANALYTIQUE”

7,978 105

7,978 105

7,5%

6.4. notes#

The tolerances are quite high with the use of a smoothing of LINEAIRE and NB_POINT_FOND, however, refining the mesh improves the results.

The,, and show the evolution of \(G\), \({K}_{I}\),, \({K}_{\mathit{II}}\), and \({K}_{\mathit{III}}\) along the crack background. It can be seen that the K3 is not correct. This is due to local base incorrections at the extremities, which are propagated all over the front because of the polynomials in LEGENDRE.

_images/100002010000034A00000253AF9DE825F5A72413.png

Figure 6.4-1: G along the crack bottom

_images/100002010000034A00000253A538BAF3B6E2552C.png

Figure 6.4-2: K1 along the crack bottom

_images/100002010000034A0000025302D953CD876A105C.png

Figure 6.4-3: K2 along the crack bottom

_images/100002010000034A0000025373E5204BC448BB70.png

Figure 6.4-4: K3 along the crack bottom

This modeling validates the calculation of G and stress intensity factors for a 3D crack in mixed mode with the use of option NB_POINT_FOND, which makes it possible to reduce the number of points at the bottom of the crack for smoothing LINEAIRE. The use of this option is strongly recommended for smoothing LINEAIRE with a free mesh and a large number of nodes at the bottom of the crack; thus, the calculation time is significantly reduced as well as the oscillations present for smoothing LINEAIRE is used without NB_POINT_FOND. Likewise, smoothing « hat » also makes it possible to eliminate the oscillations of the values of G and K, as shown in Figure, which are all the more important for a free mesh.

_images/10000201000003740000027AD789F78A74112D69.png

Figure 6.4-5: Comparison of the values of K1, K2, and K3 for smoothing LINEAIRE with the « hat » functions