2. Benchmark solution#
2.1. Calculation method used for the reference solution#
The calculation of the critical discharge load is given in detail in [bib1].
\({P}_{\mathrm{cr}}={\gamma }_{2}\frac{\sqrt{E{I}_{y}C}}{{L}^{2}}\) |
critical spill load |
with \(C=\mathrm{GJ}\) |
torsional stiffness |
\(J=((b-2{h}_{1}){h}_{2}^{3}+2a{h}_{1}^{3})\) |
torsional constant [bib2] |
\({C}_{1}E{I}_{y}\frac{{b}^{2}}{2}\) |
warping stiffness corresponding to an I-beam |
Digital application:
\(C=8578.515{\mathrm{N.m}}^{2}\)
\(\mathrm{C1}=5516.8{\mathrm{N.m}}^{4}\)
\(\frac{{L}^{2}C}{{C}_{1}}=6.22\)
The value of \({\gamma }_{2}\) depends on the \(\frac{{L}^{2}C}{{C}_{1}}\) ratio. In our case \({\gamma }_{2}\) is equal to 8.617. This value is taken from an array given in [bib1]. Which gives us \({P}_{\mathrm{cr}}=104797.82N\)
2.2. Benchmark results#
Critical discharge load and associated mode.
2.3. Uncertainties about the solution#
Analytical solution
2.4. Bibliographical references#
S.P. TIMOSHENKO, J.M. GERE: Elastic Stability Theory, Second Edition, DUNOD 1966.
S.P. TIMOSHENKO: Material Strength, Volume 2: DUNOD 1968.