Benchmark solution ===================== Calculation method used for the reference solution -------------------------------------------------------- The calculation of the critical discharge load is given in detail in [:ref:`bib1 `]. .. csv-table:: ":math:`{P}_{\mathrm{cr}}={\gamma }_{2}\frac{\sqrt{E{I}_{y}C}}{{L}^{2}}` ", "critical spill load" "with :math:`C=\mathrm{GJ}` ", "torsional stiffness" ":math:`J=((b-2{h}_{1}){h}_{2}^{3}+2a{h}_{1}^{3})` ", "torsional constant [:ref:`bib2 `]" ":math:`{C}_{1}E{I}_{y}\frac{{b}^{2}}{2}` ", "warping stiffness corresponding to an I-beam" **Digital application:** :math:`C=8578.515{\mathrm{N.m}}^{2}` :math:`\mathrm{C1}=5516.8{\mathrm{N.m}}^{4}` :math:`\frac{{L}^{2}C}{{C}_{1}}=6.22` The value of :math:`{\gamma }_{2}` depends on the :math:`\frac{{L}^{2}C}{{C}_{1}}` ratio. In our case :math:`{\gamma }_{2}` is equal to 8.617. This value is taken from an array given in [:ref:`bib1 `]. Which gives us :math:`{P}_{\mathrm{cr}}=104797.82N` Benchmark results ---------------------- Critical discharge load and associated mode. .. image:: images/Object_13.svg :width: 336 :height: 171 .. _RefImage_Object_13.svg: Uncertainties about the solution ---------------------------- Analytical solution Bibliographical references --------------------------- 1. S.P. TIMOSHENKO, J.M. GERE: Elastic Stability Theory, Second Edition, DUNOD 1966. 2. S.P. TIMOSHENKO: Material Strength, Volume 2: DUNOD 1968.