5. E modeling#

5.1. Geometry and modeling#

_images/10000000000001EC000000BEED9138FE202330B0.png

The mesh is composed of:

  • 3 QUAD4sur meshes that affect the C_ PLAN, D_ PLANet AXIS models.

  • 3 TRIA3sur meshes that affect the C_ PLAN, D_ PLANet AXIS models.

5.2. Orientation of the local coordinate system#

In order to define the local coordinate system for these elements, the keyword factor MASSIF from the AFFE_CARA_ELEM operator is used (see U4.42.01).

In the 2D case, the orientation of the coordinate system is taken into account by the ANGL_REP keyword, which only has one component left.

The table above gives the orientations chosen for each element:

QUAD4

ANGL_REP

\(90\)

TRIA3

ANGL_REP

\(45\)

5.3. Calculating local landmarks#

The local landmarks are formed by the vectors \(x\) and \(y\).

The values given in ANGL_REP define the following guidelines:

  • \(x\mathrm{=}(\mathrm{0,1})\) and \(y\mathrm{=}(\mathrm{-}\mathrm{1,0})\) for the QUAD4

  • \(x=\left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right)\) and \(y=\left(\frac{-\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right)\) for the TRIA3

5.4. Tested sizes#

The tested results are shown in the following table:

MAILLE

Vector

Component

Reference Value

Tolerance

CPL4

\(x\)

\(X\)

\(0\)

\(1.E\mathrm{-}8\)

CPL4

\(x\)

\(Y\)

\(1\)

\(1.E\mathrm{-}8\)

DPL4

\(x\)

\(X\)

\(0\)

\(1.E\mathrm{-}8\)

DPL4

\(x\)

\(Y\)

\(1\)

\(1.E\mathrm{-}8\)

AXI4

\(x\)

\(X\)

\(0\)

\(1.E\mathrm{-}8\)

AXI4

\(x\)

\(Y\)

\(1\)

\(1.E\mathrm{-}8\)

CPL3

\(x\)

\(X\)

\(0.707106781186E0\)

\(1.E\mathrm{-}8\)

CPL3

\(x\)

\(Y\)

\(0.707106781186E0\)

\(1.E\mathrm{-}8\)

DPL3

\(x\)

\(X\)

\(0.707106781186E0\)

\(1.E\mathrm{-}8\)

DPL3

\(x\)

\(Y\)

\(0.707106781186E0\)

\(1.E\mathrm{-}8\)

AXI3

\(x\)

\(X\)

\(0.707106781186E0\)

\(1.E\mathrm{-}8\)

AXI3

\(x\)

\(Y\)

\(0.707106781186E0\)

\(1.E\mathrm{-}8\)

CPL4

\(y\)

\(X\)

\(\mathrm{-}1\)

\(1.E\mathrm{-}8\)

CPL4

\(y\)

\(X\)

\(0\)

\(1.E\mathrm{-}8\)

DPL4

\(y\)

\(Y\)

\(\mathrm{-}1\)

\(1.E\mathrm{-}8\)

DPL4

\(y\)

\(X\)

\(0\)

\(1.E\mathrm{-}8\)

AXI4

\(y\)

\(Y\)

\(\mathrm{-}1\)

\(1.E\mathrm{-}8\)

AXI4

\(y\)

\(X\)

\(0\)

\(1.E\mathrm{-}8\)

CPL3

\(y\)

\(Y\)

\(\mathrm{-}0.707106781186E0\)

\(1.E\mathrm{-}8\)

CPL3

\(y\)

\(X\)

\(0.707106781186E0\)

\(1.E\mathrm{-}8\)

DPL3

\(y\)

\(Y\)

\(\mathrm{-}0.707106781186E0\)

\(1.E\mathrm{-}8\)

DPL3

\(y\)

\(X\)

\(0.707106781186E0\)

\(1.E\mathrm{-}8\)

AXI3

\(y\)

\(Y\)

\(\mathrm{-}0.707106781186E0\)

\(1.E\mathrm{-}8\)

AXI3

\(y\)

\(X\)

\(0.707106781186E0\)

\(1.E\mathrm{-}8\)