1. Modeling A#

1.1. Geometry and modeling#

The mesh is composed of:

  • 9 SEG2 cells on which the 6 types of beams and the 2 types of discrete elements with two nodes are modelled (there are two elements in POU_D_T).

  • 2 SEG3 meshes on which the 2 types of 3-knot pipes are modelled.

  • 1 SEG4 mesh on which a 4-knot pipe is modelled.

  • 2 POI1sur meshes which model the 2 types of discrete elements at a node.

All cells that have a length are oriented according to the vector \((\mathrm{1,}\mathrm{1,}0)\).

1.2. Orientation of the local coordinate system#

In order to define the local coordinate system for these elements, we use the keywords ANGL_VRIL for beams and discrete elements with two nodes, GENE_TUYAU for pipes and ANGL_NAUT for discrete elements at one node of the keyword factor ORIENTATION of the AFFE_CARA_ELEM operator (see U4.42.01).

The table above gives the orientations chosen for each element:

Beams

ANGL_VRIL

\(90\)

Discreet with two knots

ANGL_VRIL

\(\mathrm{-}90\)

Discreet to a knot

ANGL_NAUT

\((\mathrm{90,}\mathrm{-}90.0\mathrm{,90}.0)\)

Pipes

GENE_TUYAU

\((0.\mathrm{,0}\mathrm{.}\mathrm{,1}\mathrm{.})\)

1.3. Calculation of local landmarks#

The local landmarks are formed by the vectors \(x\), \(y\), and \(z\).

1.3.1. Beams#

The vector \(x\) is defined by geometry and is therefore equal to \(\left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2},0\right)\). The \(90\) value of ANGL_VRIL rotates the default coordinate system of \(90°\), which results in \(y\mathrm{=}(\mathrm{0,0}\mathrm{,1})\) and \(z=\left(\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2},0\right)\).

1.3.2. Discreet with two knots#

As for the \(x=\left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2},0\right)\) beams, but this time we pivot in the other direction which gives \(y\mathrm{=}(\mathrm{0,0},\mathrm{-}1)\) and \(z=\left(\frac{-\sqrt{2}}{2},\frac{\sqrt{2}}{2},0\right)\).

1.3.3. pipes#

No change for \(x\). We gave the value \((0.\mathrm{,0}\mathrm{.}\mathrm{,1}\mathrm{.})\) to GENE_TUYAU, the vector \(y\) is then the projection of \((0.\mathrm{,0}\mathrm{.}\mathrm{,1}\mathrm{.})\) on the plane orthogonal to \(x\), that is to say \((0.\mathrm{,0}\mathrm{.}\mathrm{,1}\mathrm{.})\) itself.

So we have \(z=\left(\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2},0\right)\).

But a different treatment of angle GAMMA1 in Code_Aster induces an additional rotation of 90° around \(x\) which finally gives:

\(y=\left(\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2},0\right)\) and \(z\mathrm{=}(0.\mathrm{,0}\mathrm{.},\mathrm{-}1.)\)

Note:

Pipes carried with SEG4 links are not compatible with those carried by SEG3 links. They are therefore treated separately.

1.3.4. Discreet at a knot#

In this case the local coordinate system is only defined by the values of ANGL_NAUT. The second component of the given vector gives \(x\mathrm{=}(0.\mathrm{,0}\mathrm{.}\mathrm{,1}\mathrm{.})\). From the three components we determine that \(y\mathrm{=}(0.,\mathrm{-}1.\mathrm{,0}\mathrm{.})\) and \(z\mathrm{=}(1.\mathrm{,0}\mathrm{.}\mathrm{,0}\mathrm{.})\).

1.4. Tested sizes#

The tested results are shown in the following table:

MAILLE

Vector

Component

Reference Value

Tolerance

POU1

\(x\)

X

\(0.707106781186E0\)

\(1.E\mathrm{-}8\)

POU3

\(x\)

Y

\(0.707106781186E0\)

\(1.E\mathrm{-}8\)

POU5

\(x\)

X

\(0.707106781186E0\)

\(1.E\mathrm{-}8\)

POU7

\(x\)

Y

\(0.707106781186E0\)

\(1.E\mathrm{-}8\)

DISL1

\(x\)

X

\(0.707106781186E0\)

\(1.E\mathrm{-}8\)

TUY32

\(x\)

Y

\(0.707106781186E0\)

\(1.E\mathrm{-}8\)

DISN2

\(x\)

Z

\(1.0\)

\(1.E\mathrm{-}8\)

POU2

\(y\)

Z

\(1.0\)

\(1.E\mathrm{-}8\)

POU4

\(y\)

Z

\(1.0\)

\(1.E\mathrm{-}8\)

POU6

\(y\)

Z

\(1.0\)

\(1.E\mathrm{-}8\)

DISL2

\(y\)

Z

\(-1.0\)

\(1.E\mathrm{-}8\)

DISN1

\(y\)

Y

\(-1.0\)

\(1.E\mathrm{-}8\)

TUY31

\(y\)

Y

\(-0.707106781186E0\)

\(1.E\mathrm{-}8\)

TUY41

\(x\)

X

\(0.707106781186E0\)

\(1.E\mathrm{-}8\)

TUY41

\(x\)

Y

\(0.707106781186E0\)

\(1.E\mathrm{-}8\)

TUY41

\(y\)

X

\(0.707106781186E0\)

\(1.E\mathrm{-}8\)

TUY41

\(y\)

Y

\(-0.707106781186E0\)

\(1.E\mathrm{-}8\)

TUY41

\(z\)

Z

\(-1.0\)

\(1.E\mathrm{-}8\)