E modeling ============== Geometry and modeling ------------------------- .. image:: images/10000000000001EC000000BEED9138FE202330B0.png :width: 3.7339in :height: 1.3102in .. _RefImage_10000000000001EC000000BEED9138FE202330B0.png: The mesh is composed of: • 3 QUAD4sur meshes that affect the C_ PLAN, D_ PLANet AXIS models. • 3 TRIA3sur meshes that affect the C_ PLAN, D_ PLANet AXIS models. Orientation of the local coordinate system --------------------------- In order to define the local coordinate system for these elements, the keyword factor MASSIF from the AFFE_CARA_ELEM operator is used (see U4.42.01). In the 2D case, the orientation of the coordinate system is taken into account by the ANGL_REP keyword, which only has one component left. The table above gives the orientations chosen for each element: .. csv-table:: "QUAD4 "," ANGL_REP "," :math:`90`" "TRIA3 "," ANGL_REP "," :math:`45`" Calculating local landmarks ------------------------- The local landmarks are formed by the vectors :math:`x` and :math:`y`. The values given in ANGL_REP define the following guidelines: * :math:`x\mathrm{=}(\mathrm{0,1})` and :math:`y\mathrm{=}(\mathrm{-}\mathrm{1,0})` for the QUAD4 * :math:`x=\left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right)` and :math:`y=\left(\frac{-\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right)` for the TRIA3 Tested sizes ------------------ The tested results are shown in the following table: .. csv-table:: "MAILLE ", "Vector", "Component", "**Reference Value**", "**Tolerance**" "CPL4 "," :math:`x` "," :math:`X` "," "," :math:`0` "," :math:`1.E\mathrm{-}8`" "CPL4 "," :math:`x` "," :math:`Y` "," "," :math:`1` "," :math:`1.E\mathrm{-}8`" "DPL4 "," :math:`x` "," :math:`X` "," "," :math:`0` "," :math:`1.E\mathrm{-}8`" "DPL4 "," :math:`x` "," :math:`Y` "," "," :math:`1` "," :math:`1.E\mathrm{-}8`" "AXI4 "," :math:`x` "," :math:`X` "," "," :math:`0` "," :math:`1.E\mathrm{-}8`" "AXI4 "," :math:`x` "," :math:`Y` "," "," :math:`1` "," :math:`1.E\mathrm{-}8`" "CPL3 "," :math:`x` "," :math:`X` "," "," :math:`0.707106781186E0` "," :math:`1.E\mathrm{-}8`" "CPL3 "," :math:`x` "," :math:`Y` "," "," :math:`0.707106781186E0` "," :math:`1.E\mathrm{-}8`" "DPL3 "," :math:`x` "," :math:`X` "," "," :math:`0.707106781186E0` "," :math:`1.E\mathrm{-}8`" "DPL3 "," :math:`x` "," :math:`Y` "," "," :math:`0.707106781186E0` "," :math:`1.E\mathrm{-}8`" "AXI3 "," :math:`x` "," :math:`X` "," "," :math:`0.707106781186E0` "," :math:`1.E\mathrm{-}8`" "AXI3 "," :math:`x` "," :math:`Y` "," "," :math:`0.707106781186E0` "," :math:`1.E\mathrm{-}8`" "CPL4 "," :math:`y` "," :math:`X` "," "," :math:`\mathrm{-}1` "," :math:`1.E\mathrm{-}8`" "CPL4 "," :math:`y` "," :math:`X` "," "," :math:`0` "," :math:`1.E\mathrm{-}8`" "DPL4 "," :math:`y` "," :math:`Y` "," "," :math:`\mathrm{-}1` "," :math:`1.E\mathrm{-}8`" "DPL4 "," :math:`y` "," :math:`X` "," "," :math:`0` "," :math:`1.E\mathrm{-}8`" "AXI4 "," :math:`y` "," :math:`Y` "," "," :math:`\mathrm{-}1` "," :math:`1.E\mathrm{-}8`" "AXI4 "," :math:`y` "," :math:`X` "," "," :math:`0` "," :math:`1.E\mathrm{-}8`" "CPL3 "," :math:`y` "," :math:`Y` "," "," :math:`\mathrm{-}0.707106781186E0` "," :math:`1.E\mathrm{-}8`" "CPL3 "," :math:`y` "," :math:`X` "," "," :math:`0.707106781186E0` "," :math:`1.E\mathrm{-}8`" "DPL3 "," :math:`y` "," :math:`Y` "," "," :math:`\mathrm{-}0.707106781186E0` "," :math:`1.E\mathrm{-}8`" "DPL3 "," :math:`y` "," :math:`X` "," "," :math:`0.707106781186E0` "," :math:`1.E\mathrm{-}8`" "AXI3 "," :math:`y` "," :math:`Y` "," "," :math:`\mathrm{-}0.707106781186E0` "," :math:`1.E\mathrm{-}8`" "AXI3 "," :math:`y` "," :math:`X` "," "," :math:`0.707106781186E0` "," :math:`1.E\mathrm{-}8`"