2. Benchmark solution#

2.1. Calculation method used for the reference solution#

2.1.1. Displacement \(\mathrm{DY}\)#

The displacement \(\mathrm{DY}\), which refers to point \(A\), corresponds to the imposed displacement.

2.1.2. Constraint \(\mathrm{SIXX}\)#

Constraint \(\mathrm{SIXX}\) corresponds to the load applied.

2.1.3. Stress \(\mathit{SIYY}\) and cumulative plastic deformation \(V1\)#

Comparison with an analytical solution.

Triaxial calculation under drained conditions with a law of DRUCK_PRAGER or DRUCK_PRAG_N_A. The calculation is done for law DRUCK_PRAG_N_A (the most general case) and the solution can be extended to case DRUCK_PRAGER by taking \(\mathrm{\beta }(p)=\mathrm{\alpha }=\mathit{constante}\).

_images/Shape4.gif

\({\mathrm{\sigma }}_{\mathit{eq}}+\mathrm{\beta }(p)\mathit{tr}(\mathrm{\sigma })-R(p)=0\)

We impose \({\mathrm{\sigma }}_{\mathit{xx}}={\mathrm{\sigma }}_{\mathit{yy}}=-2\mathit{MPa}={\mathrm{\sigma }}^{0}\)

\({\sigma }_{\mathrm{eq}}=\sqrt{\frac{3}{2}}{S}_{\mathrm{II}}\)

\(S=\left(\begin{array}{c}{\mathrm{\sigma }}_{\mathit{xx}}-\frac{1}{3}\mathit{tr}\mathrm{\sigma }\\ {\mathrm{\sigma }}_{\mathit{yy}}-\frac{1}{3}\mathit{tr}\mathrm{\sigma }\\ {\mathrm{\sigma }}_{\mathit{zz}}-\frac{1}{3}\mathit{tr}\mathrm{\sigma }\end{array}\right)\) with \(\mathit{tr}\mathrm{\sigma }={\mathrm{\sigma }}_{\mathit{xx}}+{\mathrm{\sigma }}_{\mathit{yy}}+{\mathrm{\sigma }}_{\mathit{zz}}={\mathrm{\sigma }}_{\mathit{zz}}+2{\mathrm{\sigma }}^{0}\)

\(S=\frac{1}{3}\left(\begin{array}{c}-{\mathrm{\sigma }}_{\mathit{zz}}+{\mathrm{\sigma }}^{0}\\ -{\mathrm{\sigma }}_{\mathit{zz}}+{\mathrm{\sigma }}^{0}\\ 2{\mathrm{\sigma }}_{\mathit{zz}}-2{\mathrm{\sigma }}^{0}\end{array}\right)\)

\({S}_{\mathit{II}}=S\mathrm{.}S=\frac{1}{3}\sqrt{2{({\mathrm{\sigma }}_{\mathit{zz}}-{\mathrm{\sigma }}^{0})}^{2}+{(2{\mathrm{\sigma }}_{\mathit{zz}}-2{\mathrm{\sigma }}^{0})}^{2}}\)

\({\sigma }_{\mathrm{eq}}=\sqrt{(\frac{3}{2})}{S}_{\mathrm{II}}\)

Which gives us:math: {mathrm {sigma}}} _ {mathit {eq}} =left| ({mathrm {sigma}} _ {mathit {zz}}} - {mathrm {sigma}} - {mathrm {sigma}}} - {mathit {zz}}} - {mathrm {sigma}} - {mathrm {sigma}} - {mathrm {sigma}} - {mathrm {sigma}} - {mathrm {sigma}} - {mathrm {sigma}} - {mathrm {sigma}}} - {mathrm {sigma}} - {mathrm {sigma}}} sigma}} _ {mathit {zz}}

So, in a plastic diet, we have: \({\mathrm{\sigma }}_{\mathit{zz}}=\frac{1}{\mathrm{\alpha }-1}(R(p)-(1+2\mathrm{\alpha }{\mathrm{\sigma }}^{0}))\) (1)

We also have \(\dot{{\mathrm{ϵ}}^{P}}=\mathrm{\lambda }\left(\frac{3}{2}\frac{S}{{\mathrm{\sigma }}_{\mathit{eq}}}+\mathrm{\beta }(p)I\right)=\dot{p}\left(\left(\begin{array}{c}1/2\\ 1/2\\ -1\end{array}\right)+\mathrm{\beta }(p)I\right)\)

Noting \(B(p)\) the primitive of \(\mathrm{\beta }(p)\) cancelling out at 0, he comes up with:

\({\mathrm{ϵ}}^{P}=p\left(\begin{array}{c}1/2\\ 1/2\\ -1\end{array}\right)+B(p)I\)

The stress-deformation relationship gives:

\({\mathrm{ϵ}}_{\mathit{zz}}^{e}=\frac{1}{E}{\mathrm{\sigma }}_{\mathit{zz}}-\frac{2\mathrm{\nu }}{E}{\mathrm{\sigma }}^{0}-\frac{1-2\mathrm{\nu }}{E}{\mathrm{\sigma }}^{0}\)

Using the expression for \({\mathrm{\sigma }}_{\mathit{zz}}\), we then get:

\({\mathrm{ϵ}}_{\mathit{zz}}=\frac{1}{E(a-1)}(R(p)-3a{\mathrm{\sigma }}^{0})-p+B(p)\) (2)

The expressions (1) and (2) give a parameterization of the strain-strain response as a function of the work-hardening variable \(p\).

Below are the expressions for \(B(p)\) (primitive of \(\mathrm{\beta }(p)\) cancelling out at 0), according to the type of work hardening and the law of behavior:

  • DRUCK_PRAGER, for all work hardening:

\(B(p)=\mathrm{\alpha }p\)

  • DRUCK_PRAG_N_A, linear and parabolic work hardening:

\(B(p)=\mathrm{\beta }(1-\frac{p}{2{p}_{\mathit{ultm}}})p\)

  • DRUCK_PRAG_N_A, exponential work hardening:

\(B(p)=\mathrm{\beta }{p}_{c}(1-\mathrm{exp}(\frac{-p}{{p}_{c}}))\)

2.2. Reference quantities#

  • Constraint \(\mathit{SIZZ}\) at node \(A\)

  • Cumulative plastic deformation \(\mathrm{V1}\) at node \(A\)

  • Move \(\mathrm{DY}\) to node \(A\)

2.3. Benchmark result#

For the law of behavior DRUCK_PRAGER:

Grandeur

Point

\(\mathrm{Inst}\)

Reference, linear work hardening

Reference, parabolic work hardening

\(\mathrm{SIXX}(N/{m}^{2})\)

A

\(2.0\)

\(-2.0\mathrm{E6}\)

\(-2.0\mathrm{E6}\)

\(\mathit{SIZZ}(N/{m}^{2})\)

A

\(1.07\)

\(-8.09\mathrm{E6}\)

\(-8.09\mathrm{E6}\)

\(1.16\)

\(-8.20\mathrm{E6}\)

\(-8.01\mathrm{E6}\)

\(1.34\)

\(-6.89\mathrm{E6}\)

\(-6.63\mathrm{E6}\)

\(1.53\)

\(-5.80\mathrm{E6}\)

\(-5.81\mathrm{E6}\)

\(\mathrm{V1}\)

A

\(1.07\)

\(0\)

\(0\)

\(1.16\)

\(1.99E-3\)

\(2.04E-3\)

\(1.34\)

\(6.35E-3\)

\(6.42E-3\)

\(1.53\)

\(1.09E-2\)

\(1.09E-2\)

\(\mathit{DY}\phantom{\rule{0.5em}{0ex}}(m)\)

A

\(1.07\)

\(-1.05E-3\)

\(-1.05E-3\)

\(1.16\)

\(-2.40E-3\)

\(-2.40E-3\)

\(1.34\)

\(-5.10E-3\)

\(-5.10E-3\)

\(1.53\)

\(-7.95E-3\)

\(-7.95E-3\)

For the law of behavior DRUCK_PRAG_N_A:

Grandeur

Point

NUME_ORDRE

Reference, linear work hardening

Reference, parabolic work hardening

Reference, exponential work hardening

\(\mathit{SIZZ}(N/{m}^{2})\)

A

9

\(-8.77\mathrm{.}{10}^{6}\)

\(-8.76\mathrm{.}{10}^{6}\)

\(-8.77\mathrm{.}{10}^{6}\)

34

\(-7.20\mathrm{.}{10}^{6}\)

\(-6.44\mathrm{.}{10}^{6}\)

\(-7.55\mathrm{.}{10}^{6}\)

60

\(-5.86\mathrm{.}{10}^{6}\)

\(-5.80\mathrm{.}{10}^{6}\)

/

\(\mathrm{V1}\)

A

9

\(4.69\mathrm{.}{10}^{-5}\)

\(5.11\mathrm{.}{10}^{-5}\)

\(4.69\mathrm{.}{10}^{-5}\)

34

\(5.3\mathrm{.}{10}^{-3}\)

\(5.4\mathrm{.}{10}^{-3}\)

\(5.3\mathrm{.}{10}^{-3}\)

60

\(9.8\mathrm{.}{10}^{-3}\)

\(9.8\mathrm{.}{10}^{-3}\)

/

\(\mathrm{DY}(m)\)

A

9

\(-1.2\mathrm{.}{10}^{-3}\)

\(-1.2\mathrm{.}{10}^{-3}\)

\(-1.2\mathrm{.}{10}^{-3}\)

34

\(-4.9\mathrm{.}{10}^{-3}\)

\(-4.9\mathrm{.}{10}^{-3}\)

\(-4.9\mathrm{.}{10}^{-3}\)

60

\(-8.8\mathrm{.}{10}^{-3}\)

\(-8.8\mathrm{.}{10}^{-3}\)

/

2.4. Uncertainty about the solution#

Analytical solution