7. E modeling#

7.1. Characteristics of modeling E#

Modeling AXIS.

Model of DRUCK_PRAG_N_A with linear, parabolic and exponential negative work hardening.

_images/Shape9.gif

Number of nodes

\(4\)

Number of meshes

\(5\)

That is:

SEG2

\(4\)

QUAD4

\(1\)

The square is in space \([0.\mathrm{,1}\mathrm{.}]\text{x}[0.\mathrm{,1}\mathrm{.}]\).

Coordinates of points \((m)\):

\(A:(0.,0.)\)

\(B:(1.,0.)\)

\(C:(1.,1.)\)

\(D:(0.,1.)\)

Knitwear:

\(\mathrm{M1}\): surface \(\mathrm{ABDC}\)

\(\mathrm{M2}\): segment \(\mathrm{AB}\)

\(\mathrm{M3}\): segment \(\mathrm{BC}\)

\(\mathrm{M4}\): segment \(\mathrm{CD}\)

\(\mathrm{M5}\): segment \(\mathrm{DA}\)

Node groups:

\(A,B\)

7.2. Tested sizes and results#

Grandeur

Point

NUME_ORDRE

Reference, linear work hardening

Reference, parabolic work hardening

Reference, exponential work hardening

Tolerance \(\text{\%}\)

\(\mathit{SIZZ}(N/{m}^{2})\)

A

9

\(-8.77\mathrm{.}{10}^{6}\)

\(-8.76\mathrm{.}{10}^{6}\)

\(-8.77\mathrm{.}{10}^{6}\)

0.1

34

\(-7.20\mathrm{.}{10}^{6}\)

\(-6.44\mathrm{.}{10}^{6}\)

\(-7.55\mathrm{.}{10}^{6}\)

0.1

60

\(-5.86\mathrm{.}{10}^{6}\)

\(-5.80\mathrm{.}{10}^{6}\)

/

0.1

\(\mathrm{V1}\)

A

9

\(4.69\mathrm{.}{10}^{-5}\)

\(5.11\mathrm{.}{10}^{-5}\)

\(4.69\mathrm{.}{10}^{-5}\)

0.1

34

\(5.3\mathrm{.}{10}^{-3}\)

\(5.4\mathrm{.}{10}^{-3}\)

\(5.3\mathrm{.}{10}^{-3}\)

0.1

60

\(9.8\mathrm{.}{10}^{-3}\)

\(9.8\mathrm{.}{10}^{-3}\)

/

0.1

\(\mathrm{DY}(m)\)

A

9

\(-1.2\mathrm{.}{10}^{-3}\)

\(-1.2\mathrm{.}{10}^{-3}\)

\(-1.2\mathrm{.}{10}^{-3}\)

0.1

34

\(-4.9\mathrm{.}{10}^{-3}\)

\(-4.9\mathrm{.}{10}^{-3}\)

\(-4.9\mathrm{.}{10}^{-3}\)

0.1

60

\(-8.8\mathrm{.}{10}^{-3}\)

\(-8.8\mathrm{.}{10}^{-3}\)

/

0.1