1. Reference problem#

1.1. Geometry#
Cube size: \(\mathrm{1m}\mathrm{\times }\mathrm{1m}\mathrm{\times }\mathrm{1m}\)
Center of the cube: \(O:(0.\mathrm{,0}\mathrm{.}\mathrm{,0}\mathrm{.})\)
1.2. Material properties#
Elastic
\(E=5800.0\mathrm{E6}\mathrm{Pa}\) Young’s module
\(\nu =0.3\) Poisson’s Ratio
DRUCK_PRAGER or DRUCK_PRAG_N_A with linear negative work hardening
\(\mathrm{\alpha }=0.33\) Pressure Dependence Coefficient
\({p}_{\mathrm{ultm}}=0.01\) Ultimate cumulative plastic deformation
\({\sigma }^{Y}=2.57\mathrm{E6}\mathrm{Pa}\) Plastic constraint
\(h=-2.00\mathrm{E8}\mathrm{Pa}\) Work hardening module
\(\mathrm{\beta }=0.33\) Expansion coefficient (only for DRUCK_PRAG_N_A)
DRUCK_PRAGER with parabolic negative work hardening
\(\mathrm{\alpha }=0.33\) Pressure Dependence Coefficient
\({p}_{\mathit{ultm}}=0.01\) Ultimate cumulative plastic deformation
\({\mathrm{\sigma }}^{Y}=2.57E6\mathit{Pa}\) Plastic constraint
\({\mathrm{\sigma }}_{\mathit{ultm}}^{Y}=0.57E6\mathit{Pa}\) Ultimate constraint
\(\mathrm{\beta }=0.33\) Expansion coefficient (only for DRUCK_PRAG_N_A)
DRUCK_PRAG_N_Aavec exponential negative work hardening
\(\alpha =0.33\) Pressure Dependence Coefficient
\({p}_{c}=0.01\) Ultimate cumulative plastic deformation
\({\sigma }^{Y}=2.57\mathrm{E6}\mathrm{Pa}\) Plastic constraint
\({\sigma }_{\mathit{ultm}}^{Y}\mathrm{=}0.57\mathit{E6}\mathit{Pa}\) Ultimate constraint
\(\mathrm{\beta }=0.33\) Expansion coefficient
1.3. Boundary conditions and loads#
The boundary conditions and loads applied are as follows:
Step \(A\): \(t\in [\mathrm{0,1}\mathrm{.}]\)
Compression \(p={2.10}^{6}\mathrm{Pa}\) is progressively applied to 3 faces of the cube (top, front, right) according to the function shown in the figure below, and symmetry conditions are applied to the 3 other faces (bottom, back, left).

Step B: \(t\in \text{]}\mathrm{1,2}\mathrm{.}\text{]}\)
Starting from the stress state at time \(t=1.s\), the following conditions are applied to the faces of the cube:
Compulsory trips:
the displacement varies progressively on the right face according to the function shown in the figure below:

Symmetry conditions on all 3 sides (bottom, back, left).
Imposed loads:
A pressure of \(p={2.10}^{6}\mathrm{Pa}\) is applied on the other 2 sides (front and top).