1. Reference problem#

1.1. Geometry#

We consider two cubes \(A\) and \(B\) with side \(a\mathrm{=}2\mathit{mmm}\). The two cubes are initially in contact (no step between \(A\) and \(B\)).

_images/Shape1.gif

Here is the position of the reference points (\(\mathit{mm}\)):

Cube

Point

\(x\)

\(y\)

\(z\)

\(A\)

\(\mathit{NH1}\)

2

0

2

\(A\)

\(\mathit{NH2}\)

2

2

2

2

\(A\)

\(\mathit{NH3}\)

0

2

2

\(A\)

\(\mathit{NH4}\)

0

0

2

\(A\)

\(\mathit{NH5}\)

2

0

4

\(A\)

\(\mathit{NH6}\)

2

2

4

\(A\)

\(\mathit{NH7}\)

0

0

2

4

\(A\)

\(\mathit{NH8}\)

0

0

4

\(A\)

\(\mathit{NH9}\)

2

2

1

2

\(A\)

\(\mathit{NH10}\)

1

2

2

\(A\)

\(\mathit{NH11}\)

0

1

2

\(A\)

\(\mathit{NH12}\)

1

0

2

\(A\)

\(\mathit{NH17}\)

2

2

1

4

\(A\)

\(\mathit{NH18}\)

1

2

4

\(A\)

\(\mathit{NH19}\)

0

0

1

4

\(A\)

\(\mathit{NH20}\)

1

0

4

\(A\)

\(\mathit{NH26}\)

1

1

4

\(A\)

\(\mathit{NH21}\)

1

1

2

\(B\)

\(\mathit{NB1}\)

2

0

0

\(B\)

\(\mathit{NB2}\)

2

2

0

\(B\)

\(\mathit{NB3}\)

0

0

2

0

\(B\)

\(\mathit{NB4}\)

0

0

0

\(B\)

\(\mathit{NB5}\)

2

0

2

\(B\)

\(\mathit{NB6}\)

2

2

2

2

\(B\)

\(\mathit{NB7}\)

0

2

2

\(B\)

\(\mathit{NB8}\)

0

0

2

\(B\)

\(\mathit{NB17}\)

2

2

1

2

\(B\)

\(\mathit{NB18}\)

1

2

2

2

\(B\)

\(\mathit{NB19}\)

0

1

2

\(B\)

\(\mathit{NB20}\)

1

0

2

\(B\)

\(\mathit{NB26}\)

1

1

2

\(B\)

\(\mathit{NB9}\)

2

2

1

0

\(B\)

\(\mathit{NB10}\)

1

2

0

\(B\)

\(\mathit{NB11}\)

0

0

1

0

\(B\)

\(\mathit{NB12}\)

1

0

0

\(B\)

\(\mathit{NB21}\)

1

1

0

1.2. Material properties#

The two cubes are elastic with:

  • Poisson’s ratio: \(0\)

  • Young’s module: \(200\mathit{GPa}\)

1.3. Boundary conditions and loads#

We impose a \(\mathit{DZ}\mathrm{=}\mathrm{-}\mathrm{0.2mm}\) displacement on the \(A\) cube. The two cubes are in contact without friction.