1. Reference problem#
1.1. Geometry#
We consider two cubes \(A\) and \(B\) with side \(a\mathrm{=}2\mathit{mmm}\). The two cubes are initially in contact (no step between \(A\) and \(B\)).

Here is the position of the reference points (\(\mathit{mm}\)):
Cube |
Point |
\(x\) |
|
|
|
\(A\) |
|
2 |
0 |
2 |
|
\(A\) |
|
2 |
2 |
2 |
2 |
\(A\) |
|
0 |
2 |
2 |
|
\(A\) |
|
0 |
0 |
2 |
|
\(A\) |
|
2 |
0 |
4 |
|
\(A\) |
|
2 |
2 |
4 |
|
\(A\) |
|
0 |
0 |
2 |
4 |
\(A\) |
|
0 |
0 |
4 |
|
\(A\) |
|
2 |
2 |
1 |
2 |
\(A\) |
|
1 |
2 |
2 |
|
\(A\) |
|
0 |
1 |
2 |
|
\(A\) |
|
1 |
0 |
2 |
|
\(A\) |
|
2 |
2 |
1 |
4 |
\(A\) |
|
1 |
2 |
4 |
|
\(A\) |
|
0 |
0 |
1 |
4 |
\(A\) |
|
1 |
0 |
4 |
|
\(A\) |
|
1 |
1 |
4 |
|
\(A\) |
|
1 |
1 |
2 |
|
\(B\) |
|
2 |
0 |
0 |
|
\(B\) |
|
2 |
2 |
0 |
|
\(B\) |
|
0 |
0 |
2 |
0 |
\(B\) |
|
0 |
0 |
0 |
|
\(B\) |
|
2 |
0 |
2 |
|
\(B\) |
|
2 |
2 |
2 |
2 |
\(B\) |
|
0 |
2 |
2 |
|
\(B\) |
|
0 |
0 |
2 |
|
\(B\) |
|
2 |
2 |
1 |
2 |
\(B\) |
|
1 |
2 |
2 |
2 |
\(B\) |
|
0 |
1 |
2 |
|
\(B\) |
|
1 |
0 |
2 |
|
\(B\) |
|
1 |
1 |
2 |
|
\(B\) |
|
2 |
2 |
1 |
0 |
\(B\) |
|
1 |
2 |
0 |
|
\(B\) |
|
0 |
0 |
1 |
0 |
\(B\) |
|
1 |
0 |
0 |
|
\(B\) |
|
1 |
1 |
0 |
1.2. Material properties#
The two cubes are elastic with:
Poisson’s ratio: \(0\)
Young’s module: \(200\mathit{GPa}\)
1.3. Boundary conditions and loads#
We impose a \(\mathit{DZ}\mathrm{=}\mathrm{-}\mathrm{0.2mm}\) displacement on the \(A\) cube. The two cubes are in contact without friction.