8. F modeling#
8.1. Characteristics of modeling#
The modeling is 3D.
Contact method: Contact method: contact formulation CONTINUE.
8.2. Characteristics of the mesh#
Number of knots: 40
Number of meshes and types: 2 HEXA20
8.3. Tested sizes and results#
Identification |
Reference type |
Reference value |
Tolerance |
DEPL, \(\mathit{DZ}\) at point \(\mathit{NH1}\) |
“ANALYTIQUE” |
-0.1 |
1.0E-6% |
DEPL, \(\mathit{DZ}\) at point \(\mathit{NH2}\) |
“ANALYTIQUE” |
-0.1 |
1.0E-6% |
DEPL, \(\mathit{DZ}\) at point \(\mathit{NH3}\) |
“ANALYTIQUE” |
-0.1 |
1.0E-6% |
DEPL, \(\mathit{DZ}\) at point \(\mathit{NH4}\) |
“ANALYTIQUE” |
-0.1 |
1.0E-6% |
DEPL, \(\mathit{DZ}\) at point \(\mathit{NH9}\) |
“ANALYTIQUE” |
-0.1 |
1.0E-6% |
DEPL, \(\mathit{DZ}\) at point \(\mathit{NH10}\) |
“ANALYTIQUE” |
-0.1 |
1.0E-6% |
DEPL, \(\mathit{DZ}\) at point \(\mathit{NH11}\) |
“ANALYTIQUE” |
-0.1 |
1.0E-6% |
DEPL, \(\mathit{DZ}\) at point \(\mathit{NH12}\) |
“ANALYTIQUE” |
-0.1 |
1.0E-6% |
DEPL, \(\mathit{DZ}\) at point \(\mathit{NB5}\) |
“ANALYTIQUE” |
-0.1 |
1.0E-6% |
DEPL, \(\mathit{DZ}\) at point \(\mathit{NB6}\) |
“ANALYTIQUE” |
-0.1 |
1.0E-6% |
DEPL, \(\mathit{DZ}\) at point \(\mathit{NB7}\) |
“ANALYTIQUE” |
-0.1 |
1.0E-6% |
DEPL, \(\mathit{DZ}\) at point \(\mathit{NB8}\) |
“ANALYTIQUE” |
-0.1 |
1.0E-6% |
DEPL, \(\mathit{DZ}\) at point \(\mathit{NB17}\) |
“ANALYTIQUE” |
-0.1 |
1.0E-6% |
DEPL, \(\mathit{DZ}\) at point \(\mathit{NB18}\) |
“ANALYTIQUE” |
-0.1 |
1.0E-6% |
DEPL, \(\mathit{DZ}\) at point \(\mathit{NB19}\) |
“ANALYTIQUE” |
-0.1 |
1.0E-6% |
DEPL, \(\mathit{DZ}\) at point \(\mathit{NB20}\) |
“ANALYTIQUE” |
-0.1 |
1.0E-6% |
REAC_NODA, \(\mathit{DZ}\) at point \(\mathit{NH1}\) |
“ANALYTIQUE” |
\(\mathrm{-}10000\mathrm{/}3\) |
1.0E-6% |
REAC_NODA, \(\mathit{DZ}\) at point \(\mathit{NH2}\) |
“ANALYTIQUE” |
\(\mathrm{-}10000\mathrm{/}3\) |
1.0E-6% |
REAC_NODA, \(\mathit{DZ}\) at point \(\mathit{NH3}\) |
“ANALYTIQUE” |
\(\mathrm{-}10000\mathrm{/}3\) |
1.0E-6% |
REAC_NODA, \(\mathit{DZ}\) at point \(\mathit{NH4}\) |
“ANALYTIQUE” |
\(\mathrm{-}10000\mathrm{/}3\) |
1.0E-6% |
REAC_NODA, \(\mathit{DZ}\) at point \(\mathit{NH9}\) |
“ANALYTIQUE” |
\((4\mathrm{\times }10000)\mathrm{/}3\) |
1.0E-6% |
REAC_NODA, \(\mathit{DZ}\) at point \(\mathit{NH10}\) |
“ANALYTIQUE” |
\((4\mathrm{\times }10000)\mathrm{/}3\) |
1.0E-6% |
REAC_NODA, \(\mathit{DZ}\) at point \(\mathit{NH11}\) |
“ANALYTIQUE” |
\((4\mathrm{\times }10000)\mathrm{/}3\) |
1.0E-6% |
REAC_NODA, \(\mathit{DZ}\) at point \(\mathit{NH12}\) |
“ANALYTIQUE” |
\((4\mathrm{\times }10000)\mathrm{/}3\) |
1.0E-6% |
REAC_NODA, \(\mathit{DZ}\) at point \(\mathit{NB5}\) |
“ANALYTIQUE” |
\(10000\mathrm{/}3\) |
1.0E-6% |
REAC_NODA, \(\mathit{DZ}\) at point \(\mathit{NB6}\) |
“ANALYTIQUE” |
\(10000\mathrm{/}3\) |
1.0E-6% |
REAC_NODA, \(\mathit{DZ}\) at point \(\mathit{NB7}\) |
“ANALYTIQUE” |
\(10000\mathrm{/}3\) |
1.0E-6% |
REAC_NODA, \(\mathit{DZ}\) at point \(\mathit{NB8}\) |
“ANALYTIQUE” |
\(10000\mathrm{/}3\) |
1.0E-6% |
REAC_NODA, \(\mathit{DZ}\) at point \(\mathit{NB17}\) |
“ANALYTIQUE” |
\(\mathrm{-}(4\mathrm{\times }10000)\mathrm{/}3\) |
1.0E-6% |
REAC_NODA, \(\mathit{DZ}\) at point \(\mathit{NB18}\) |
“ANALYTIQUE” |
\(\mathrm{-}(4\mathrm{\times }10000)\mathrm{/}3\) |
1.0E-6% |
REAC_NODA, \(\mathit{DZ}\) at point \(\mathit{NB19}\) |
“ANALYTIQUE” |
\(\mathrm{-}(4\mathrm{\times }10000)\mathrm{/}3\) |
1.0E-6% |
REAC_NODA, \(\mathit{DZ}\) at point \(\mathit{NB20}\) |
“ANALYTIQUE” |
\(\mathrm{-}(4\mathrm{\times }10000)\mathrm{/}3\) |
1.0E-6% |
To demonstrate the value of continuous formulation on QUAD8, LAGS_C is being tested in addition to REAC_NODA. These are true pressure values, we no longer have the problem of positive undefined form functions. So we have to find the pressure to \(p\mathrm{=}E(0.1\mathrm{/}0.2)\).
8.4. notes#
The results obtained are perfect. The screening is going well. There is no generalized Newton convergence. It is necessary to switch to partial Newton or fixed point.