4. B modeling#

4.1. Characteristics of modeling#

The modeling is 3D.

Contact method: contact formulation DISCRETE, active constraints algorithm and with REAC_GEOM =” CONTROLE “.

4.2. Characteristics of the mesh#

Number of knots: 40

Number of meshes and types: 2 HEXA20

4.3. Tested sizes and results#

Identification

Reference type

Reference value

Tolerance

DEPL, \(\mathit{DZ}\) at point \(\mathit{NH1}\)

“ANALYTIQUE”

-0.1

1.0E-6%

DEPL, \(\mathit{DZ}\) at point \(\mathit{NH2}\)

“ANALYTIQUE”

-0.1

1.0E-6%

DEPL, \(\mathit{DZ}\) at point \(\mathit{NH3}\)

“ANALYTIQUE”

-0.1

1.0E-6%

DEPL, \(\mathit{DZ}\) at point \(\mathit{NH4}\)

“ANALYTIQUE”

-0.1

1.0E-6%

DEPL, \(\mathit{DZ}\) at point \(\mathit{NH9}\)

“ANALYTIQUE”

-0.1

1.0E-6%

DEPL, \(\mathit{DZ}\) at point \(\mathit{NH10}\)

“ANALYTIQUE”

-0.1

1.0E-6%

DEPL, \(\mathit{DZ}\) at point \(\mathit{NH11}\)

“ANALYTIQUE”

-0.1

1.0E-6%

DEPL, \(\mathit{DZ}\) at point \(\mathit{NH12}\)

“ANALYTIQUE”

-0.1

1.0E-6%

DEPL, \(\mathit{DZ}\) at point \(\mathit{NB5}\)

“ANALYTIQUE”

-0.1

1.0E-6%

DEPL, \(\mathit{DZ}\) at point \(\mathit{NB6}\)

“ANALYTIQUE”

-0.1

1.0E-6%

DEPL, \(\mathit{DZ}\) at point \(\mathit{NB7}\)

“ANALYTIQUE”

-0.1

1.0E-6%

DEPL, \(\mathit{DZ}\) at point \(\mathit{NB8}\)

“ANALYTIQUE”

-0.1

1.0E-6%

DEPL, \(\mathit{DZ}\) at point \(\mathit{NB17}\)

“ANALYTIQUE”

-0.1

1.0E-6%

DEPL, \(\mathit{DZ}\) at point \(\mathit{NB18}\)

“ANALYTIQUE”

-0.1

1.0E-6%

DEPL, \(\mathit{DZ}\) at point \(\mathit{NB19}\)

“ANALYTIQUE”

-0.1

1.0E-6%

DEPL, \(\mathit{DZ}\) at point \(\mathit{NB20}\)

“ANALYTIQUE”

-0.1

1.0E-6%

REAC_NODA, \(\mathit{DZ}\) at point \(\mathit{NH1}\)

“ANALYTIQUE”

\(\mathrm{-}10000\mathrm{/}3\)

1.0E-6%

REAC_NODA, \(\mathit{DZ}\) at point \(\mathit{NH2}\)

“ANALYTIQUE”

\(\mathrm{-}10000\mathrm{/}3\)

1.0E-6%

REAC_NODA, \(\mathit{DZ}\) at point \(\mathit{NH3}\)

“ANALYTIQUE”

\(\mathrm{-}10000\mathrm{/}3\)

1.0E-6%

REAC_NODA, \(\mathit{DZ}\) at point \(\mathit{NH4}\)

“ANALYTIQUE”

\(\mathrm{-}10000\mathrm{/}3\)

1.0E-6%

REAC_NODA, \(\mathit{DZ}\) at point \(\mathit{NH9}\)

“ANALYTIQUE”

\((4\mathrm{\times }10000)\mathrm{/}3\)

1.0E-6%

REAC_NODA, \(\mathit{DZ}\) at point \(\mathit{NH10}\)

“ANALYTIQUE”

\((4\mathrm{\times }10000)\mathrm{/}3\)

1.0E-6%

REAC_NODA, \(\mathit{DZ}\) at point \(\mathit{NH11}\)

“ANALYTIQUE”

\((4\mathrm{\times }10000)\mathrm{/}3\)

1.0E-6%

REAC_NODA, \(\mathit{DZ}\) at point \(\mathit{NH12}\)

“ANALYTIQUE”

\((4\mathrm{\times }10000)\mathrm{/}3\)

1.0E-6%

REAC_NODA, \(\mathit{DZ}\) at point \(\mathit{NB5}\)

“ANALYTIQUE”

\(10000\mathrm{/}3\)

1.0E-6%

REAC_NODA, \(\mathit{DZ}\) at point \(\mathit{NB6}\)

“ANALYTIQUE”

\(10000\mathrm{/}3\)

1.0E-6%

REAC_NODA, \(\mathit{DZ}\) at point \(\mathit{NB7}\)

“ANALYTIQUE”

\(10000\mathrm{/}3\)

1.0E-6%

REAC_NODA, \(\mathit{DZ}\) at point \(\mathit{NB8}\)

“ANALYTIQUE”

\(10000\mathrm{/}3\)

1.0E-6%

REAC_NODA, \(\mathit{DZ}\) at point \(\mathit{NB17}\)

“ANALYTIQUE”

\(\mathrm{-}(4\mathrm{\times }10000)\mathrm{/}3\)

1.0E-6%

REAC_NODA, \(\mathit{DZ}\) at point \(\mathit{NB18}\)

“ANALYTIQUE”

\(\mathrm{-}(4\mathrm{\times }10000)\mathrm{/}3\)

1.0E-6%

REAC_NODA, \(\mathit{DZ}\) at point \(\mathit{NB19}\)

“ANALYTIQUE”

\(\mathrm{-}(4\mathrm{\times }10000)\mathrm{/}3\)

1.0E-6%

REAC_NODA, \(\mathit{DZ}\) at point \(\mathit{NB20}\)

“ANALYTIQUE”

\(\mathrm{-}(4\mathrm{\times }10000)\mathrm{/}3\)

1.0E-6%

4.4. notes#

The results obtained are perfect. The screening is going well. The positive undefined form functions in QUAD8 give us results that « oscillate », which is mechanically wrong, but consistent with the approximation.