2. Benchmark solution#

2.1. Calculation method#

The calculation of stress intensity factors is obtained in [1] by a semi-analytical procedure which consists in superimposing displacement profiles verifying free stress conditions on the crack lips.

2.2. Reference quantities and results#

The values of \({K}_{1}\) and \({K}_{2}\) given in [1] are compared to crack bottoms.

Points

\({K}_{1}\)

\({K}_{2}\)

Points

\({K}_{1}\)

\({K}_{2}\)

\(A\)

1,7943

2.8522

\(A\text{'}\)

3,7215

2.3379

\(B\)

1,9932

2.4042

\(B\text{'}\)

2.6700

1.0248

\(C\)

-1.6920

-0.1337

\(C\text{'}\)

5.3966

-0.1143

\(F\)

0.0510

0.2894

\(F\text{'}\)

4.3255

-0.1661

\(G\)

-0.5317

0.1885

\(G\text{'}\)

3.6812

0.9279

\(H\)

-0.0517

-0.1979

\(H\text{'}\)

0.4157

-0.3947

\(I\)

-0.1933

0.0213

\(I\text{'}\)

1.0043

0.0648

Table 2: stress intensity factors at the bottom of cracks obtained in [1].

2.3. Uncertainty about the solution#

The number of significant figures given in Table 2 reflects the quality of the semi-analytical solution. In fact, convergence towards these figures can be verified in the case of an increasingly fine mesh.

2.4. Bibliographical references#

      1. YAVUZ, S. L. PHOENIX, « Multiple Crack Analysis in Finite Plates », AIAA Journal, Vol. 44, No. 11, November 2006.

    1. SIAVELIS, M. GUITON, P. MASSIN, N. MOËS « Large sliding contact along branched discontinuities with X- FEM », under review, 2012.