1. Reference problem#

1.1. Geometry#

_images/100002000000080000000627D5EC974C2438846E.png

1.2. Material properties#

The properties of the material constituting the plate are:

\(E\mathrm{=}2.{10}^{11}\mathit{Pa}\)

Young’s module

\(\nu \mathrm{=}0.3\)

Poisson’s ratio

1.3. Boundary conditions and loads#

Boundary conditions: Embedded \(\mathit{AD}\) side

We are looking for the successive states of equilibrium under the load imposed on side \(\mathit{BC}\):

\(p(t)={p}_{\mathrm{cr}}t\)

with

\(t\)

pseudo_temps

\({p}_{\mathrm{cr}}\)

Euler critical load

The load applied corresponds to the critical load of Euler \({p}_{\mathit{cr}}=\frac{{\mathrm{\pi }}^{2}EI}{4{L}^{2}}=\mathrm{1124,21}N\)

1.4. Initial conditions#

Not applicable