1. Reference problem#

1.1. Geometry#

_images/10001DA8000026F70000184A59737879081FF67D.svg

Internal radius: \(a=\mathrm{0,1}\mathrm{mm}\)

External radius: \(b=\mathrm{0,2}\mathrm{mm}\)

Point coordinates ( \(\mathrm{mm}\) )

\(A\)

\(B\)

\(E\)

\(F\)

\(C\)

\(D\)

\(x\)

\(0.1\)

\(0.2\)

\(0.1\mathrm{\times }\mathrm{cos}(45)\)

\(0.2\mathrm{\times }\mathrm{cos}(45)\)

\(0.1\mathrm{\times }\mathrm{cos}(22.5)\)

\(0.2\mathrm{\times }\mathrm{cos}(22.5)\)

\(y\)

0

0

\(0.1\mathrm{\times }\mathrm{sin}(45)\)

\(0.1\mathrm{\times }\mathrm{sin}(45)\)

\(0.1\mathrm{\times }\mathrm{sin}(22.5)\)

\(0.1\mathrm{\times }\mathrm{sin}(22.5)\)

\(z\)

0

0

0

0

0

0

0

1.2. Material properties#

The elastic properties of the material under consideration are as follows:

Young’s module: \(E\mathrm{=}{2.10}^{5}\mathit{MPa}\)

Poisson’s ratio: \(\nu \mathrm{=}0.4999\)

1.3. Boundary conditions and loads#

The internal pressure imposed is equal to \(P\mathrm{=}60\mathit{MPa}\).