5. C modeling#
5.1. Characteristics of modeling#
Meshing with incompressible 2D elements like QUAD8 and TRIA6.
Boundary conditions:
DDL_IMPO = GROUP_NO =” GRNM11 “, DX = 0 side \(\mathrm{AB}\)
FACE_IMPO = GROUP_MA =” GRMA12 “, DNOR = 0 side \(\mathrm{EF}\)
PRES_REP = GROUP_MA =” GRMA13 “, PRES = 60 sided \(\mathrm{AE}\)
Node name:
\(A=\mathrm{N2}\), \(B=\mathrm{N361}\), \(C=\mathrm{N121}\), \(D=\mathrm{N584}\),, \(E=\mathrm{N155}\), \(F=\mathrm{N503}\)
5.2. Characteristics of the mesh#
Number of knots: 591
Number of meshes: 200 TRIA6, 50 QUAD8.
5.3. Tested sizes and results#
Results at point \(A\):
first column D_ PLAN_INCO_UPG without imposing \(\mathrm{GONF}=0\)
second column D_ PLAN_INCO_UPG by imposing \(\mathrm{GONF}=0\)
third column D_ PLAN_INCO_UP with quadratic mesh
fourth columnD_ PLAN_INCO_UP with linear mesh
fifth columnD_ PLAN_INCO_UPO with linear elements
Identification |
Reference type |
Reference value |
Tolerance |
||||
1 |
2 |
3 |
4 |
5 |
|||
\(u\) |
“ANALYTIQUE” |
10-5 |
10-5 |
10-5 |
10-5 |
10-5 |
|
\(v\) |
“ANALYTIQUE” |
|
0.50% |
0.50% |
0.50% |
0.50% |
0.50% |
\({\sigma }_{\mathrm{xx}}\) |
“ANALYTIQUE” |
0.50% |
0.50% |
0.50% |
0.60% |
0.50% |
|
\({\sigma }_{\mathrm{yy}}\) |
“ANALYTIQUE” |
—60. |
0.50% |
0.50% |
0.50% |
2.50% |
2.10% |
\({\sigma }_{\mathrm{zz}}\) |
“ANALYTIQUE” |
0.50% |
0.50% |
0.50% |
5.00% |
1.60% |
|
\({\sigma }_{\mathrm{xy}}\) |
“ANALYTIQUE” |
0.3 |
0.3 |
0.3 |
1.5 |
0.9 |
|
\({\varepsilon }_{\mathrm{xx}}\) |
“ANALYTIQUE” |
|
0.50% |
0.50% |
0.50% |
0.50% |
0.50% |
\({\varepsilon }_{\mathrm{yy}}\) |
“ANALYTIQUE” |
—6. 10-4 |
0.50% |
0.50% |
0.50% |
1.50% |
1.50% |
\({\varepsilon }_{\mathrm{xy}}\) |
“ANALYTIQUE” |
10-5 |
10-5 |
10-5 |
10-5 |
10-5 |
|
\({\varepsilon }_{\mathrm{eq}}\) - INVA_2 |
“ANALYTIQUE” |
6.92 10-4 |
0.50% |
0.50% |
0.50% |
1.00% |
1.00% |
\({\varepsilon }_{\mathrm{eq}}\) - PRIN_1 |
“ANALYTIQUE” |
—6. 10-4 |
0.50% |
0.50% |
0.50% |
1.50% |
1.50% |
\({\varepsilon }_{\mathrm{eq}}\) - PRIN_2 |
“ANALYTIQUE” |
10-5 |
10-5 |
10-5 |
10-5 |
10-5 |
|
\({\varepsilon }_{\mathrm{eq}}\) - PRIN_3 |
“ANALYTIQUE” |
|
0.50% |
0.50% |
0.50% |
0.50% |
0.50% |
\({\sigma }_{\mathrm{eq}}\) - VMIS |
“ANALYTIQUE” |
138.56 |
1.00% |
1.00% |
1.00% |
1.00% |
1.00% |
\({\sigma }_{\mathrm{eq}}\) - TRESCA |
“ANALYTIQUE” |
1.00% |
1.00% |
1.00% |
1.00% |
1.00% |
|
\({\sigma }_{\mathrm{eq}}\) - PRIN_1 |
“ANALYTIQUE” |
-60. |
1.00% |
1.00% |
1.00% |
2.50% |
2.10% |
\({\sigma }_{\mathrm{eq}}\) - PRIN_2 |
“ANALYTIQUE” |
1.00% |
1.00% |
1.00% |
5.00% |
1.60% |
|
\({\sigma }_{\mathrm{eq}}\) - PRIN_3 |
“ANALYTIQUE” |
1.00% |
1.00% |
1.00% |
1.00% |
1.00% |
|
\({\sigma }_{\mathrm{eq}}\) - VMIS |
“ANALYTIQUE” |
138.56 |
1.00% |
1.00% |
1.00% |
1.00% |
1.00% |
Results at point \(F\):
first column D_ PLAN_INCO_UPG without imposing \(\mathrm{GONF}=0\)
second column D_ PLAN_INCO_UPG by imposing \(\mathrm{GONF}=0\)
third column D_ PLAN_INCO_UP with quadratic mesh
fourth columnD_ PLAN_INCO_UP with linear mesh
fifth columnD_ PLAN_INCO_UPO with linear elements
Identification |
Reference type |
Reference value |
Tolerance |
||||
1 |
2 |
3 |
4 |
5 |
|||
\(u\) |
“ANALYTIQUE” |
—2.12 10-5 |
0.50% |
0.50% |
0.50% |
0.50% |
0.50% |
\(v\) |
“ANALYTIQUE” |
2.12 10-5 |
0.50% |
0.50% |
0.50% |
0.50% |
0.50% |
\({\sigma }_{\mathrm{xx}}\) |
“ANALYTIQUE” |
0.50% |
0.50% |
0.50% |
1.00% |
1.00% |
|
\({\sigma }_{\mathrm{yy}}\) |
“ANALYTIQUE” |
0.50% |
0.50% |
0.50% |
2.00% |
1.50% |
|
\({\sigma }_{\mathrm{zz}}\) |
“ANALYTIQUE” |
0.50% |
0.50% |
0.50% |
0.50% |
0.50% |
|
\({\sigma }_{\mathrm{xy}}\) |
“ANALYTIQUE” |
0.50% |
0.50% |
0.50% |
0.50% |
0.50% |
|
\({\varepsilon }_{\mathrm{xx}}\) |
“ANALYTIQUE” |
10-5 |
10-5 |
10-5 |
10-5 |
10-5 |
|
\({\varepsilon }_{\mathrm{yy}}\) |
“ANALYTIQUE” |
10-5 |
10-5 |
10-5 |
10-5 |
10-5 |
|
\({\varepsilon }_{\mathrm{xy}}\) |
“ANALYTIQUE” |
1.5 10-4 |
0.50% |
0.50% |
0.50% |
0.50% |
0.50% |
5.4. notes#
As for 3D modeling, the results obtained are completely satisfactory.