5. C modeling#

5.1. Characteristics of modeling#

Meshing with incompressible 2D elements like QUAD8 and TRIA6.

_images/10005A2E00002957000015E96F33A1848BC62479.svg

Boundary conditions:

DDL_IMPO = GROUP_NO =” GRNM11 “, DX = 0 side \(\mathrm{AB}\)

FACE_IMPO = GROUP_MA =” GRMA12 “, DNOR = 0 side \(\mathrm{EF}\)

PRES_REP = GROUP_MA =” GRMA13 “, PRES = 60 sided \(\mathrm{AE}\)

Node name:

\(A=\mathrm{N2}\), \(B=\mathrm{N361}\), \(C=\mathrm{N121}\), \(D=\mathrm{N584}\),, \(E=\mathrm{N155}\), \(F=\mathrm{N503}\)

5.2. Characteristics of the mesh#

Number of knots: 591

Number of meshes: 200 TRIA6, 50 QUAD8.

5.3. Tested sizes and results#

Results at point \(A\):

  • first column D_ PLAN_INCO_UPG without imposing \(\mathrm{GONF}=0\)

  • second column D_ PLAN_INCO_UPG by imposing \(\mathrm{GONF}=0\)

  • third column D_ PLAN_INCO_UP with quadratic mesh

  • fourth columnD_ PLAN_INCO_UP with linear mesh

  • fifth columnD_ PLAN_INCO_UPO with linear elements

Identification

Reference type

Reference value

Tolerance

1

2

3

4

5

\(u\)

“ANALYTIQUE”

10-5

10-5

10-5

10-5

10-5

\(v\)

“ANALYTIQUE”

  1. 10-5

0.50%

0.50%

0.50%

0.50%

0.50%

\({\sigma }_{\mathrm{xx}}\)

“ANALYTIQUE”

0.50%

0.50%

0.50%

0.60%

0.50%

\({\sigma }_{\mathrm{yy}}\)

“ANALYTIQUE”

—60.

0.50%

0.50%

0.50%

2.50%

2.10%

\({\sigma }_{\mathrm{zz}}\)

“ANALYTIQUE”

0.50%

0.50%

0.50%

5.00%

1.60%

\({\sigma }_{\mathrm{xy}}\)

“ANALYTIQUE”

0.3

0.3

0.3

1.5

0.9

\({\varepsilon }_{\mathrm{xx}}\)

“ANALYTIQUE”

  1. 10-4

0.50%

0.50%

0.50%

0.50%

0.50%

\({\varepsilon }_{\mathrm{yy}}\)

“ANALYTIQUE”

—6. 10-4

0.50%

0.50%

0.50%

1.50%

1.50%

\({\varepsilon }_{\mathrm{xy}}\)

“ANALYTIQUE”

10-5

10-5

10-5

10-5

10-5

\({\varepsilon }_{\mathrm{eq}}\) - INVA_2

“ANALYTIQUE”

6.92 10-4

0.50%

0.50%

0.50%

1.00%

1.00%

\({\varepsilon }_{\mathrm{eq}}\) - PRIN_1

“ANALYTIQUE”

—6. 10-4

0.50%

0.50%

0.50%

1.50%

1.50%

\({\varepsilon }_{\mathrm{eq}}\) - PRIN_2

“ANALYTIQUE”

10-5

10-5

10-5

10-5

10-5

\({\varepsilon }_{\mathrm{eq}}\) - PRIN_3

“ANALYTIQUE”

  1. 10-4

0.50%

0.50%

0.50%

0.50%

0.50%

\({\sigma }_{\mathrm{eq}}\) - VMIS

“ANALYTIQUE”

138.56

1.00%

1.00%

1.00%

1.00%

1.00%

\({\sigma }_{\mathrm{eq}}\) - TRESCA

“ANALYTIQUE”

1.00%

1.00%

1.00%

1.00%

1.00%

\({\sigma }_{\mathrm{eq}}\) - PRIN_1

“ANALYTIQUE”

-60.

1.00%

1.00%

1.00%

2.50%

2.10%

\({\sigma }_{\mathrm{eq}}\) - PRIN_2

“ANALYTIQUE”

1.00%

1.00%

1.00%

5.00%

1.60%

\({\sigma }_{\mathrm{eq}}\) - PRIN_3

“ANALYTIQUE”

1.00%

1.00%

1.00%

1.00%

1.00%

\({\sigma }_{\mathrm{eq}}\) - VMIS

“ANALYTIQUE”

138.56

1.00%

1.00%

1.00%

1.00%

1.00%

Results at point \(F\):

  • first column D_ PLAN_INCO_UPG without imposing \(\mathrm{GONF}=0\)

  • second column D_ PLAN_INCO_UPG by imposing \(\mathrm{GONF}=0\)

  • third column D_ PLAN_INCO_UP with quadratic mesh

  • fourth columnD_ PLAN_INCO_UP with linear mesh

  • fifth columnD_ PLAN_INCO_UPO with linear elements

Identification

Reference type

Reference value

Tolerance

1

2

3

4

5

\(u\)

“ANALYTIQUE”

—2.12 10-5

0.50%

0.50%

0.50%

0.50%

0.50%

\(v\)

“ANALYTIQUE”

2.12 10-5

0.50%

0.50%

0.50%

0.50%

0.50%

\({\sigma }_{\mathrm{xx}}\)

“ANALYTIQUE”

0.50%

0.50%

0.50%

1.00%

1.00%

\({\sigma }_{\mathrm{yy}}\)

“ANALYTIQUE”

0.50%

0.50%

0.50%

2.00%

1.50%

\({\sigma }_{\mathrm{zz}}\)

“ANALYTIQUE”

0.50%

0.50%

0.50%

0.50%

0.50%

\({\sigma }_{\mathrm{xy}}\)

“ANALYTIQUE”

0.50%

0.50%

0.50%

0.50%

0.50%

\({\varepsilon }_{\mathrm{xx}}\)

“ANALYTIQUE”

10-5

10-5

10-5

10-5

10-5

\({\varepsilon }_{\mathrm{yy}}\)

“ANALYTIQUE”

10-5

10-5

10-5

10-5

10-5

\({\varepsilon }_{\mathrm{xy}}\)

“ANALYTIQUE”

1.5 10-4

0.50%

0.50%

0.50%

0.50%

0.50%

5.4. notes#

As for 3D modeling, the results obtained are completely satisfactory.