4. B modeling#

4.1. Characteristics of modeling#

Meshing with incompressible 3D elements of type TETRA10 only

_images/100147DE000069D5000048C34BB63DF767058DA9.svg

\(\mathrm{AB}\) is on the \(\mathrm{OX}\) axis (unlike the \(A\) modeling).

For stripping purposes, we define node \(\mathrm{NOEUMI}=A+(0.0.e/4)\) where the deformations and stresses are the same as in \(A\).

Conditions limits :

DDL_IMPO = GROUP_NO =' FACSUP ', DZ = 0

GROUP_NO =” FACINF “, DZ = 0 sides \(\mathit{AEFD}\) (\(z\mathrm{=}0\) and \(z\mathrm{=}0.01\)) GROUP_NO =” FACEAB “, DY = 0 side \(\mathit{AB}\)

FACE_IMPO = GROUP_MA =” FACEEF “, DNOR = 0 sides \(\mathit{EF}\)

PRES_REP = GROUP_MA =” FACEAE “, PRES = 60 sided \(\mathit{AE}\)

4.2. Characteristics of the mesh#

Number of knots: 13907

Number of meshes: 8519 TETRA10

4.3. Tested sizes and results#

Result at point \(A\):

  • first column 3D_ INCO_UPG without imposing \(\mathrm{GONF}=0\)

  • second column 3D_ INCO_UPG by imposing \(\mathrm{GONF}=0\)

  • third column 3D_ INCO_UP with quadratic elements

  • fourth column3D_ INCO_UP with linear elements

  • fifth column3D_ INCO_UPO with linear elements

Identification

Reference type

Reference value

Tolerance

1

2

3

4

5

\(u\)

“ANALYTIQUE”

  1. 10 -5

0.50%

0.50%

0.50%

0.50%

0.50%

\(v\)

“ANALYTIQUE”

10-5

10-5

10-5

10-5

10-5

\({\sigma }_{\mathrm{xx}}\)

“ANALYTIQUE”

—60.

1.00%

1.00%

1.00%

4.00%

3.00%

\({\sigma }_{\mathrm{yy}}\)

“ANALYTIQUE”

1.00%

1.00%

1.00%

1.50%

1.00%

\({\sigma }_{\mathrm{zz}}\)

“ANALYTIQUE”

2.50%

2.50%

2.50%

10.00%

3.00%

\({\sigma }_{\mathrm{xy}}\)

“ANALYTIQUE”

2.5

2.5

2.5

2.5

2.5

\({\varepsilon }_{\mathrm{xx}}\)

“ANALYTIQUE”

-6. 10-4

0.50%

0.50%

0.50%

1.50%

2.0%

\({\varepsilon }_{\mathrm{yy}}\)

“ANALYTIQUE”

  1. 10-4

0.50%

0.50%

0.50%

1.00%

1.00%

\({\varepsilon }_{\mathrm{xy}}\)

“ANALYTIQUE”

  1. 10-5

  1. 10-5

  1. 10-5

  1. 10-5

  1. 10-5

\({\varepsilon }_{\mathrm{eq}}\) - INVA_2

“ANALYTIQUE”

6.92 10-4

0.50%

0.50%

0.50%

1.00%

1.50%

\({\varepsilon }_{\mathrm{eq}}\) - PRIN_1

“ANALYTIQUE”

—6. 10-4

0.50%

0.50%

0.50%

1.50%

2.0%

\({\varepsilon }_{\mathrm{eq}}\) - PRIN_2

“ANALYTIQUE”

10-5

10-5

10-5

10-5

10-5

\({\varepsilon }_{\mathrm{eq}}\) - PRIN_3

“ANALYTIQUE”

  1. 10-4

0.50%

0.50%

0.50%

1.00%

1.0%

\({\sigma }_{\mathrm{eq}}\) - VMIS

“ANALYTIQUE”

138.56

1.00%

1.00%

1.00%

1.00%

1.5%

\({\sigma }_{\mathrm{eq}}\) - TRESCA

“ANALYTIQUE”

1.00%

1.00%

1.00%

1.00%

1.5%

\({\sigma }_{\mathrm{eq}}\) - PRIN_1

“ANALYTIQUE”

-60.

3.00%

3.00%

3.00%

4.00%

3.00%

\({\sigma }_{\mathrm{eq}}\) - PRIN_2

“ANALYTIQUE”

3.00%

3.00%

3.00%

10.00%

3.00%

\({\sigma }_{\mathrm{eq}}\) - PRIN_3

“ANALYTIQUE”

1.00%

1.00%

1.00%

1.50%

1.00%

\({\sigma }_{\mathrm{eq}}\) - VMIS

“ANALYTIQUE”

138.56

1.00%

1.00%

1.00%

1.00%

1.5%

Result at point \(F\):

  • first column 3D_ INCO_UPG without imposing \(\mathrm{GONF}=0\)

  • second column 3D_ INCO_UPG by imposing \(\mathrm{GONF}=0\)

  • third column 3D_ INCO_UP with quadratic elements

  • fourth column3D_ INCO_UP with linear elements

  • fifth column3D_ INCO_UPO with linear elements

Identification

Reference type

Reference value

Tolerance

1

2

3

4

5

\(u\)

“ANALYTIQUE”

2.12 10-5

0.50%

0.50%

0.50%

0.50%

0.50%

\(v\)

“ANALYTIQUE”

2.12 10-5

0.50%

0.50%

0.50%

0.50%

0.50%

\({\sigma }_{\mathrm{xx}}\)

“ANALYTIQUE”

1.00%

1.00%

1.00%

1.50%

1.50%

\({\sigma }_{\mathrm{yy}}\)

“ANALYTIQUE”

1.00%

1.00%

1.00%

1.00%

1.00%

\({\sigma }_{\mathrm{zz}}\)

“ANALYTIQUE”

1.00%

1.00%

1.00%

1.50%

1.00%

\({\sigma }_{\mathrm{xy}}\)

“ANALYTIQUE”

-20.

1.00%

1.00%

1.00%

1.00%

1.00%

\({\varepsilon }_{\mathrm{xx}}\)

“ANALYTIQUE”

10-5

10-5

10-5

10-5

10-5

\({\varepsilon }_{\mathrm{yy}}\)

“ANALYTIQUE”

10-5

10-5

10-5

10-5

10-5

\({\varepsilon }_{\mathrm{xy}}\)

“ANALYTIQUE”

-1.5 10-4

0.50%

0.50%

0.50%

1.00%

1.00%

Checking the transition to the nodes for the middle nodes (only for the result obtained without imposing GONF = 0) - value at node \(\mathrm{NOEUMI}\):

Identification

Reference type

Reference value

Tolerance ( \(\text{\%}\) )

\({\sigma }_{\mathrm{xx}}\)

“ANALYTIQUE”

-60.

1.70%

\({\sigma }_{\mathrm{yy}}\)

“ANALYTIQUE”

0.60%

\({\sigma }_{\mathrm{zz}}\)

“ANALYTIQUE”

3.50%

\({\varepsilon }_{\mathrm{xx}}\)

“ANALYTIQUE”

-6. 10-4

0.50%

\({\varepsilon }_{\mathrm{yy}}\)

“ANALYTIQUE”

  1. 10-4

0.50%

4.4. notes#

The results obtained here are a bit worse than in the case of modeling \(A\), but the discretization is coarser since there are about 2 times fewer nodes in this test case. The results are still satisfactory since the differences are less than \(\text{0.2 \%}\) for the movements, less than \(\text{0.5 \%}\) for the deformations and less than \(\text{1 \%}\) for the constraints. We note again that there is no significant improvement in the result when \(\mathrm{tr}\varepsilon =0\) is explicitly imposed.