3. Modeling A#
3.1. Characteristics of modeling#
Meshes:
Following axis \(z\):
total thickness \(e=0.01\mathrm{mm}\)
2 layers of elements
For the purposes of stripping into a middle node, we define node \(\mathrm{NOEUMI}=A+(0.0.e/4)\) where the deformations and stresses are the same as in \(A\).
Conditions limits :
DDL_IMPO = GROUP_NO =' FACSUP ', DZ = 0
GROUP_NO =” FACINF “, DZ = 0 sides \(\mathit{AEFD}\) (\(z\mathrm{=}0\) and \(z\mathrm{=}0.01\)) GROUP_NO =” FACEAB “, DX = 0 sides \(\mathit{AB}\)
FACE_IMPO = GROUP_MA =” FACEEF “, DNOR = 0 sides \(\mathit{EF}\)
PRES_REP = GROUP_MA =” FACEAE “, PRES = 60 sided \(\mathit{AE}\)
3.2. Characteristics of meshes#
Mesh 1 HEXA20:
Number of knots: 1501 knots
Number of meshes: 240 HEXA20
Mesh 2 HEXA8:
Number of knots: 429 knots
Number of meshes: 240 HEXA8
3.3. Tested sizes and results#
Results at point \(A\):
first column 3D_ INCO_UPG without imposing \(\mathrm{GONF}=0\)
second column 3D_ INCO_UPG by imposing \(\mathrm{GONF}=0\)
third column 3D_ INCO_UP
fourth column 3D_ INCO_UPO
Identification |
Reference type |
Reference value |
Tolerance |
|||
1 |
2 |
3 |
4 |
|||
\(v\) |
“ANALYTIQUE” |
|
10-5 |
10-5 |
10-5 |
10-5 |
\({\sigma }_{\mathrm{xx}}\) |
“ANALYTIQUE” |
0.10% |
0.10% |
0.10% |
0.15% |
|
\({\sigma }_{\mathrm{yy}}\) |
“ANALYTIQUE” |
—60. |
0.50% |
0.50% |
0.50% |
9.0% |
\({\sigma }_{\mathrm{zz}}\) |
“ANALYTIQUE” |
0.50% |
0.50% |
0.50% |
5.0% |
|
\({\sigma }_{\mathrm{xy}}\) |
“ANALYTIQUE” |
0.50% |
0.50% |
0.50% |
50.00% |
|
\({\varepsilon }_{\mathrm{xx}}\) |
“ANALYTIQUE” |
|
10-5 |
10-5 |
10-5 |
10-5 |
\({\varepsilon }_{\mathrm{yy}}\) |
“ANALYTIQUE” |
—6. 10-4 |
0.50% |
0.50% |
0.50% |
7.0% |
\({\varepsilon }_{\mathrm{zz}}\) |
“ANALYTIQUE” |
0.50% |
0.50% |
0.50% |
0.50% |
|
\({\varepsilon }_{\mathrm{xy}}\) |
“ANALYTIQUE” |
10-5 |
10-5 |
10-5 |
3,10-5 |
|
\({\varepsilon }_{\mathrm{eq}}\) - INVA_2 |
“ANALYTIQUE” |
6.92 10-4 |
10-5 |
10-5 |
10-5 |
5,10-2 |
\({\varepsilon }_{\mathrm{eq}}\) - PRIN_1 |
“ANALYTIQUE” |
—6. 10-4 |
0.50% |
0.50% |
0.50% |
7.0% |
\({\varepsilon }_{\mathrm{eq}}\) - PRIN_2 |
“ANALYTIQUE” |
0.50% |
0.50% |
0.50% |
10-5 |
|
\({\varepsilon }_{\mathrm{eq}}\) - PRIN_3 |
“ANALYTIQUE” |
|
10-5 |
10-5 |
10-5 |
5,10-2 |
\({\sigma }_{\mathrm{eq}}\) - VMIS |
“ANALYTIQUE” |
138.56 |
0.50% |
0.50% |
0.50% |
5.00% |
\({\sigma }_{\mathrm{eq}}\) - TRESCA |
“ANALYTIQUE” |
0.50% |
0.50% |
0.50% |
5.00% |
|
\({\sigma }_{\mathrm{eq}}\) - PRIN_1 |
“ANALYTIQUE” |
-60. |
0.50% |
0.50% |
0.50% |
10.0% |
\({\sigma }_{\mathrm{eq}}\) - PRIN_2 |
“ANALYTIQUE” |
0.50% |
0.50% |
0.50% |
5.00% |
|
\({\sigma }_{\mathrm{eq}}\) - PRIN_3 |
“ANALYTIQUE” |
0.50% |
0.50% |
0.50% |
1.50% |
|
\({\sigma }_{\mathrm{eq}}\) - VMIS |
“ANALYTIQUE” |
138.56 |
0.50% |
0.50% |
0.50% |
5.0% |
Results at point \(F\):
first column 3D_ INCO_UPG without imposing \(\mathrm{GONF}=0\)
second column 3D_ INCO_UPG by imposing \(\mathrm{GONF}=0\)
third column 3D_ INCO_UP
fourth column 3D_ INCO_UPO
Identification |
Reference type |
Reference value |
Tolerance |
|||
1 |
2 |
3 |
4 |
|||
\(u\) |
“ANALYTIQUE” |
—2.12 10-5 |
0.10% |
0.10% |
0.10% |
0.10% |
\(v\) |
“ANALYTIQUE” |
2.12 10-5 |
0.10% |
0.10% |
0.10% |
0.10% |
\({\sigma }_{\mathrm{xx}}\) |
“ANALYTIQUE” |
0.50% |
0.50% |
0.50% |
3.0% |
|
\({\sigma }_{\mathrm{yy}}\) |
“ANALYTIQUE” |
0.50% |
0.50% |
0.50% |
6.0% |
|
\({\sigma }_{\mathrm{zz}}\) |
“ANALYTIQUE” |
0.50% |
0.50% |
0.50% |
1.0% |
|
\({\sigma }_{\mathrm{xy}}\) |
“ANALYTIQUE” |
0.50% |
0.50% |
0.50% |
2.0% |
|
\({\varepsilon }_{\mathrm{xx}}\) |
“ANALYTIQUE” |
10-5 |
10-5 |
10-5 |
10-5 |
|
\({\varepsilon }_{\mathrm{yy}}\) |
“ANALYTIQUE” |
10-5 |
10-5 |
10-5 |
10-5 |
|
\({\varepsilon }_{\mathrm{xy}}\) |
“ANALYTIQUE” |
1.5 10-4 |
0.50% |
0.50% |
0.50% |
2.0% |
Checking the transition to the nodes for the middle nodes (only for the result obtained without imposing GONF = 0) - value at node \(\mathrm{NOEUMI}\):
Identification |
Reference type |
Reference value |
Tolerance ( \(\text{\%}\) ) |
\({\sigma }_{\mathrm{xx}}\) |
“ANALYTIQUE” |
|
|
\({\sigma }_{\mathrm{yy}}\) |
“ANALYTIQUE” |
—60. |
|
\({\sigma }_{\mathrm{zz}}\) |
“ANALYTIQUE” |
|
|
\({\varepsilon }_{\mathrm{xx}}\) |
“ANALYTIQUE” |
|
|
\({\varepsilon }_{\mathrm{yy}}\) |
“ANALYTIQUE” |
—6. 10-4 |
|
3.4. notes#
Apart from 3D_ INCO_UPO, very good results are obtained regardless of the formulation adopted since for all the quantities examined, the difference between the solution obtained with the code and the analytical solution is less than \(\text{0.2 \%}\). We can see that the difference between the solutions obtained by imposing or not imposing condition \(\mathit{tr}(\varepsilon )\mathrm{=}0\) is insignificant.
The results obtained with 3D_ INCO_UPOsont less accurate. This is due to the fact that the elements used are linear. To find a more accurate result, the mesh would have to be refined.