3. Modeling A#

3.1. Characteristics of modeling#

DALLE

Y

A3

A4

A2

A1

LSYMY

LSYMX

LCONTX

LCONTY

_images/10000000000001E0000001E09B5895DB4FFF4EB0.png

Q4GG modeling (TRIA3)

  • Boundary conditions:

. Side \(\mathrm{A2A4}\): \(\mathrm{DZ}=0\)

  • Symmetry conditions

. Side \(\mathrm{A1A2}\): \(\mathrm{DY}=\mathrm{DRX}=0\)

. Side \(\mathrm{A1A3}\): \(\mathit{DX}\mathrm{=}\mathit{DRY}\mathrm{=}0\)

X The slab is symmetric with respect to planes \((X\mathrm{=}0)\) and \((Y\mathrm{=}0)\), the calculations are carried out on a quarter of the slab.

3.2. Characteristics of the mesh#

Number of knots: 169

Number of meshes and type: 288 TRIA3

3.3. Tested sizes and results#

Identification

Reference Type

Reference

Tolerance (%)

\(\mathit{DZ}(\mathit{A1})\)

“ANALYTIQUE”

6,926.10-5

5%

\(\mathit{MXX}(\mathit{A1})\)

“ANALYTIQUE”

1550

8%

\(\mathit{MYY}(\mathit{A1})\)

“ANALYTIQUE”

1550

8%

\(\mathit{KXX}(\mathit{A1})\)

“ANALYTIQUE”

2,193.10-4

8%

\(\mathit{KYY}(\mathit{A1})\)

“ANALYTIQUE”

2,193.10-4

8%

The quantities are expressed in the coordinate system defined by the nautical angles \(\alpha \mathrm{=}33°\) and \(\beta \mathrm{=}12°\)

Identification

Reference Type

Reference

Tolerance

\(\mathrm{DZ}(\mathrm{A1})\)

“ANALYTIQUE”

6,926.10-5

5%

\(\mathit{MXX}(\mathit{A1})\)

“ANALYTIQUE”

1550.0

8%

\(\mathit{MYY}(\mathit{A1})\)

“ANALYTIQUE”

1550.0

8%

\(\mathit{MXY}(\mathit{A1})\)

“ANALYTIQUE”

\(\mathit{KXX}(\mathit{A1})\)

“ANALYTIQUE”

2.193 10-4

8%

\(\mathit{KYY}(\mathit{A1})\)

“ANALYTIQUE”

2.193 10-4

8%

\(\mathit{KXY}(\mathit{A1})\)

“ANALYTIQUE”

0.001

Identification

Reference type

Reference

Tolerance%

\(\mathit{MXX}\)

\(\mathit{M266}\)

\(\mathit{Point}3\)

“NON_REGRESSION”

1445.794

1.e-6

\(\mathit{MYY}\)

\(\mathit{M266}\)

\(\mathit{Point}3\)

“NON_REGRESSION”

1447.847

1.e-6

\(\mathit{MXY}\)

\(\mathit{M266}\)

\(\mathit{Point}3\)

“NON_REGRESSION”

0.526

1.e-6

\(\mathit{KXX}\)

\(\mathit{M266}\)

\(\mathit{Point}3\)

“NON_REGRESSION”

2.14096 10-4

1.e-6

\(\mathit{KYY}\)

\(\mathit{M266}\)

\(\mathit{Point}3\)

“NON_REGRESSION”

2.14565 10-4

1.e-6

\(\mathit{KXY}\)

\(\mathit{M266}\)

\(\mathit{Point}3\)

“NON_REGRESSION”

1.2018 10-7

1.e-6

3.4. notes#

The coefficients of the following elasticity matrices, used during the calculations, were calculated with \({\nu }_{b}=\mathrm{0,22}\):

  1. Membrane elasticity matrix: \(\left[\begin{array}{ccc}4832& \mathrm{990,4}& 0\\ \mathrm{990,4}& 4832& 0\\ 0& 0& 1756\end{array}\right]{10}^{6}\text{N/m}\)

  2. Flexural elasticity matrix: \(\left[\begin{array}{ccc}\mathrm{5,879}& \mathrm{1,188}& 0\\ \mathrm{1,188}& \mathrm{5,879}& 0\\ 0& 0& \mathrm{2,107}\end{array}\right]{10}^{6}\text{N/m}\)

To be certain of staying within the elastic domain, the elastic limits, expressed in the orthotropy coordinate system, are set arbitrarily to a very high value:

    • Elastic limits in positive flexure:

    Direction x: \({1.10}^{10}\text{MNm/ml}\)

    Direction y: \({1.10}^{10}\text{MNm/ml}\)

    • Elastic limits in negative flexure:

    Direction x: \(\mathrm{-}{1.10}^{10}\text{MNm/ml}\)

    Direction y: \(\mathrm{-}{1.10}^{10}\text{MNm/ml}\)

As the structure remains in the elastic domain, the kinematic recall coefficient (Prager constant) can take any value.