Modeling A ============== Characteristics of modeling ----------------------------------- DALLE Y A3 A4 A2 A1 LSYMY LSYMX LCONTX LCONTY .. image:: images/10000000000001E0000001E09B5895DB4FFF4EB0.png :width: 2.2083in :height: 2.2154in .. _RefImage_10000000000001E0000001E09B5895DB4FFF4EB0.png: Q4GG modeling (TRIA3) - Boundary conditions: . Side :math:`\mathrm{A2A4}`: :math:`\mathrm{DZ}=0` - Symmetry conditions . Side :math:`\mathrm{A1A2}`: :math:`\mathrm{DY}=\mathrm{DRX}=0` . Side :math:`\mathrm{A1A3}`: :math:`\mathit{DX}\mathrm{=}\mathit{DRY}\mathrm{=}0` X The slab is symmetric with respect to planes :math:`(X\mathrm{=}0)` and :math:`(Y\mathrm{=}0)`, the calculations are carried out on a quarter of the slab. Characteristics of the mesh ---------------------------- Number of knots: 169 Number of meshes and type: 288 TRIA3 Tested sizes and results ------------------------------ .. csv-table:: "**Identification**", "**Reference Type**", "**Reference**", "**Tolerance (%)**" ":math:`\mathit{DZ}(\mathit{A1})` ", "'ANALYTIQUE'", "6,926.10-5"," 5%" ":math:`\mathit{MXX}(\mathit{A1})` ", "'ANALYTIQUE'", "1550"," 8%" ":math:`\mathit{MYY}(\mathit{A1})` ", "'ANALYTIQUE'", "1550"," 8%" ":math:`\mathit{KXX}(\mathit{A1})` ", "'ANALYTIQUE'", "2,193.10-4"," 8%" ":math:`\mathit{KYY}(\mathit{A1})` ", "'ANALYTIQUE'", "2,193.10-4"," 8%" The quantities are expressed in the coordinate system defined by the nautical angles :math:`\alpha \mathrm{=}33°` and :math:`\beta \mathrm{=}12°` .. csv-table:: "**Identification**", "**Reference Type**", "**Reference**", "**Tolerance**" ":math:`\mathrm{DZ}(\mathrm{A1})` ", "'ANALYTIQUE'", "6,926.10-5"," 5%" ":math:`\mathit{MXX}(\mathit{A1})` ", "'ANALYTIQUE'", "1550.0"," 8%" ":math:`\mathit{MYY}(\mathit{A1})` ", "'ANALYTIQUE'", "1550.0"," 8%" ":math:`\mathit{MXY}(\mathit{A1})` ", "'ANALYTIQUE'", "0. ", "2." ":math:`\mathit{KXX}(\mathit{A1})` ", "'ANALYTIQUE'", "2.193 10-4"," 8%" ":math:`\mathit{KYY}(\mathit{A1})` ", "'ANALYTIQUE'", "2.193 10-4"," 8%" ":math:`\mathit{KXY}(\mathit{A1})` ", "'ANALYTIQUE'", "0. ", "0.001" +--------------------+---------------------+-----------------------+------------------+-------------+--------------+ |**Identification** |**Reference type**|**Reference**|**Tolerance%**| +--------------------+---------------------+-----------------------+------------------+-------------+--------------+ |:math:`\mathit{MXX}`|:math:`\mathit{M266}`|:math:`\mathit{Point}3`|'NON_REGRESSION' |1445.794 |1.e-6 | +--------------------+---------------------+-----------------------+------------------+-------------+--------------+ |:math:`\mathit{MYY}`|:math:`\mathit{M266}`|:math:`\mathit{Point}3`|'NON_REGRESSION' |1447.847 |1.e-6 | +--------------------+---------------------+-----------------------+------------------+-------------+--------------+ |:math:`\mathit{MXY}`|:math:`\mathit{M266}`|:math:`\mathit{Point}3`|'NON_REGRESSION' |0.526 |1.e-6 | +--------------------+---------------------+-----------------------+------------------+-------------+--------------+ |:math:`\mathit{KXX}`|:math:`\mathit{M266}`|:math:`\mathit{Point}3`|'NON_REGRESSION' |2.14096 10-4 |1.e-6 | +--------------------+---------------------+-----------------------+------------------+-------------+--------------+ |:math:`\mathit{KYY}`|:math:`\mathit{M266}`|:math:`\mathit{Point}3`|'NON_REGRESSION' |2.14565 10-4 |1.e-6 | +--------------------+---------------------+-----------------------+------------------+-------------+--------------+ |:math:`\mathit{KXY}`|:math:`\mathit{M266}`|:math:`\mathit{Point}3`|'NON_REGRESSION' |1.2018 10-7 |1.e-6 | +--------------------+---------------------+-----------------------+------------------+-------------+--------------+ notes --------- The coefficients of the following elasticity matrices, used during the calculations, were calculated with :math:`{\nu }_{b}=\mathrm{0,22}`: 1. Membrane elasticity matrix: :math:`\left[\begin{array}{ccc}4832& \mathrm{990,4}& 0\\ \mathrm{990,4}& 4832& 0\\ 0& 0& 1756\end{array}\right]{10}^{6}\text{N/m}` 2. Flexural elasticity matrix: :math:`\left[\begin{array}{ccc}\mathrm{5,879}& \mathrm{1,188}& 0\\ \mathrm{1,188}& \mathrm{5,879}& 0\\ 0& 0& \mathrm{2,107}\end{array}\right]{10}^{6}\text{N/m}` To be certain of staying within the elastic domain, the elastic limits, expressed in the orthotropy coordinate system, are set arbitrarily to a very high value: 1. * Elastic limits in positive flexure: Direction x: :math:`{1.10}^{10}\text{MNm/ml}` Direction y: :math:`{1.10}^{10}\text{MNm/ml}` 1. * Elastic limits in negative flexure: Direction x: :math:`\mathrm{-}{1.10}^{10}\text{MNm/ml}` Direction y: :math:`\mathrm{-}{1.10}^{10}\text{MNm/ml}` As the structure remains in the elastic domain, the kinematic recall coefficient (Prager constant) can take any value.