2. Benchmark solution#

2.1. Calculation method used for the reference solution#

The elastic relationships, connecting membrane forces \(N\) and bending forces \(M\) to membrane strains \(\varepsilon\) and curvatures \(\kappa\) and taking into account two symmetric grids, are written:

\(N\mathrm{=}(\frac{{E}_{b}h}{1\mathrm{-}{\nu }_{b}^{2}}\left[\begin{array}{ccc}1& {\nu }_{b}& 0\\ {\nu }_{b}& 1& 0\\ 0& 0& \frac{1\mathrm{-}{\nu }_{b}}{2}\end{array}\right]+2{E}_{a}\left[\begin{array}{ccc}{a}_{x}& 0& 0\\ 0& {a}_{y}& 0\\ 0& 0& 0\end{array}\right])\epsilon\)

\(M\mathrm{=}(\frac{{E}_{b}{h}^{3}}{12(1\mathrm{-}{\nu }_{b}^{2})}\left[\begin{array}{ccc}1& {\nu }_{b}& 0\\ {\nu }_{b}& 1& 0\\ 0& 0& \frac{1\mathrm{-}{\nu }_{b}}{2}\end{array}\right]+2{E}_{a}{e}_{s}^{2}\left[\begin{array}{ccc}{a}_{x}& 0& 0\\ 0& {a}_{y}& 0\\ 0& 0& 0\end{array}\right])\kappa\)

As it is a slab configuration, the concrete is assigned the usual Poisson’s ratio \({\nu }_{b}=\mathrm{0,22}\). The slab is simply supported on the four edges:

_images/100013D6000069BB00005245D61C86F33C5274F5.svg

The equivalent bending stiffness is:

\({D}_{\mathit{éq}}\mathrm{=}\frac{{E}_{b}{h}^{3}}{12(1\mathrm{-}{\nu }_{b}^{2})}+2{E}_{a}{e}_{s}^{2}{a}_{x}\), or here: \({D}_{\mathrm{éq}}=\mathrm{5,8786}\text{MNm}\); In addition: \({\nu }_{\mathrm{éq}}=\frac{{\nu }_{b}{E}_{b}{h}^{3}}{12(1-{\nu }_{b}^{2}){D}_{\mathrm{éq}}}\), that is: \({\nu }_{\mathrm{éq}}=\mathrm{0,2022}\)

Size

Expression

Center arrow under pressure [2]

\(w\mathrm{=}\frac{\mathrm{0,0464}{\mathit{pl}}^{4}}{12(1\mathrm{-}{\nu }_{\mathit{éq}}^{2}){D}_{\mathit{éq}}}\)

Center curve [2]

\({\kappa }_{\mathit{xx}}\mathrm{=}{\kappa }_{\mathit{yy}}\mathrm{=}\frac{\mathrm{0,04784}{\mathit{pl}}^{2}}{(1+{\nu }_{\mathit{éq}}){D}_{\mathit{éq}}}\)

Global moment in the center [2]

\({M}_{\mathrm{xx}}={M}_{\mathrm{yy}}=\mathrm{0,04784}{\mathrm{pl}}^{2}\)

2.2. Benchmark results#

For A and B models in which we validate the GLRC_DAMA law with the DKTG elements:

  • Center arrow under pressure: \(w=\mathrm{6,926}{.10}^{-5}\text{m}\)

  • Curvature at the center: \({\kappa }_{\mathit{xx}}\mathrm{=}{\kappa }_{\mathit{yy}}\mathrm{=}\mathrm{2,193}{.10}^{\mathrm{-}4}{\text{m}}^{\mathrm{-}1}\)

  • Global moment at the center: \({M}_{\mathit{xx}}\mathrm{=}{M}_{\mathit{yy}}\mathrm{=}1550\text{Nm/ml}\)

For C and D models in which we validate the ELAS law with the DKTG elements:

  • Center arrow under pressure: \(w=\mathrm{7,895}{.10}^{-5}\text{m}\)

  • Curvature at the center: \({\kappa }_{\mathit{xx}}={\kappa }_{\mathit{yy}}=\mathrm{2,351}{.10}^{-4}{\text{m}}^{-1}\)

  • Global moment at the center: \({M}_{\mathit{xx}}\mathrm{=}{M}_{\mathit{yy}}\mathrm{=}1550\text{Nm/ml}\)

2.3. Uncertainty about the solution#

Analytical solution.

2.4. Bibliographical references#

[1] KOECHLIN P., MOULIN S., « Global behavior model of reinforced concrete plates under dynamic flexural loading: Law GLRC « , Note EDF /R &D/ AMA HT-62/01/028A.

[2] J.Dulac, « Elasto-plastic dynamic behavior of reinforced concrete slabs. Essays CEMETE — December 1979 — Slabs 8 to 12 »: Note EDF: ESE /GC/82/13/A