4. B modeling#

4.1. Characteristics of modeling#

LCONTY

LCONTX

LSYMX

LSYMY

A1

A2

A3

Y

DALLE

X

A4

_images/10000000000001E0000001E04FCDAA3B7314596F.png

Q4GG modeling (QUAD4)

  • Boundary conditions:

. Side \(\mathrm{A2A4}\): \(\mathrm{DZ}=0\)

. Side \(\mathit{A3A4}\): \(\mathrm{DZ}=0\)

  • Symmetry conditions

. Side \(\mathrm{A1A2}\): \(\mathrm{DY}=\mathrm{DRX}=0\)

. Side \(\mathrm{A1A3}\): \(\mathrm{DX}=\mathrm{DRY}=0\)

The slab is symmetric with respect to planes \((X=0)\) and \((Y=0)\), the calculations are carried out on a quarter of the slab.

4.2. Characteristics of the mesh#

Number of knots: 169

Number of meshes and type: 144 QUAD4

4.3. Tested sizes and results#

.

Identification

Reference Type

Reference

Tolerance (%)

\(\mathit{DZ}(\mathit{A1})\)

“ANALYTIQUE”

6,926.10-5

5%

\(\mathit{MXX}(\mathit{A1})\)

“ANALYTIQUE”

1550

8%

\(\mathit{MYY}(\mathit{A1})\)

“ANALYTIQUE”

1550

8%

\(\mathit{KXX}(\mathit{A1})\)

“ANALYTIQUE”

2,193.10-4

8%

\(\mathit{KYY}(\mathit{A1})\)

“ANALYTIQUE”

2,193.10-4

8%

The quantities are expressed in the coordinate system defined by the nautical angles \(\alpha \mathrm{=}33°\) and \(\beta \mathrm{=}12°\).

Identification

Reference Type

Reference

Tolerance

\(\mathrm{DZ}(\mathrm{A1})\)

“ANALYTIQUE”

6,926.10-5

5%

\(\mathit{MXX}(\mathit{A1})\)

“ANALYTIQUE”

1550.0

8%

\(\mathit{MYY}(\mathit{A1})\)

“ANALYTIQUE”

1550.0

8%

\(\mathit{MXY}(\mathit{A1})\)

“ANALYTIQUE”

\(\mathit{KXX}(\mathit{A1})\)

“ANALYTIQUE”

2.193 10-4

8%

\(\mathit{KYY}(\mathit{A1})\)

“ANALYTIQUE”

2.193 10-4

8%

\(\mathit{KXY}(\mathit{A1})\)

“ANALYTIQUE”

0.001

Identification

Reference type

Reference

Tolerance%

\(\mathit{MXX}\)

\(\mathit{M133}\)

\(\mathit{Point}4\)

“NON_REGRESSION”

1444.999

1.e-6

\(\mathit{MYY}\)

\(\mathit{M133}\)

\(\mathit{Point}4\)

“NON_REGRESSION”

1447.976

1.e-6

\(\mathit{MXY}\)

\(\mathit{M133}\)

\(\mathit{Point}4\)

“NON_REGRESSION”

-0.6626

1.e-6

\(\mathit{KXX}\)

\(\mathit{M133}\)

\(\mathit{Point}4\)

“NON_REGRESSION”

2.1394 10-4

1.e-6

\(\mathit{KYY}\)

\(\mathit{M133}\)

\(\mathit{Point}4\)

“NON_REGRESSION”

2.1462 10-4

1.e-6

\(\mathit{KXY}\)

\(\mathit{M133}\)

\(\mathit{Point}4\)

“NON_REGRESSION”

-1.5151 10-7

1.e-6

4.4. notes#

See modeling notes A