6. D modeling#

6.1. Characteristics of modeling#

LCONTY

LCONTX

LSYMX

LSYMY

A1

A2

A3

Y

DALLE

X

A4

_images/10000000000001E0000001E04FCDAA3B7314596F.png

Q4GG modeling (QUAD4)

  • Boundary conditions:

. Side \(\mathit{A2A4}\): \(\mathit{DZ}\mathrm{=}0\)

. Side \(\mathit{A3A4}\): \(\mathrm{DZ}=0\)

  • Symmetry conditions

. Side \(\mathit{A1A2}\): \(\mathit{DY}\mathrm{=}\mathit{DRX}\mathrm{=}0\)

. Side \(\mathit{A1A3}\): \(\mathit{DX}\mathrm{=}\mathit{DRY}\mathrm{=}0\)

The slab is symmetric with respect to planes \((X\mathrm{=}0)\) and \((Y\mathrm{=}0)\), the calculations are carried out on a quarter of the slab.

6.2. Characteristics of the mesh#

Number of knots: 169

Number of meshes and type: 144 QUAD4

6.3. Tested sizes and results#

Identification

Reference Type

Reference

% Tolerance

\(\mathit{DZ}(\mathit{A1})\)

“ANALYTIQUE”

7,895.10-5

8%

\(\mathrm{MXX}(\mathrm{A1})\)

“ANALYTIQUE”

1550

3%

\(\mathrm{MYY}(\mathrm{A1})\)

“ANALYTIQUE”

1550

3%

\(\mathrm{KXX}(\mathrm{A1})\)

“ANALYTIQUE”

2,351.10-4

3%

\(\mathrm{KYY}(\mathrm{A1})\)

“ANALYTIQUE”

2,351.10-4

3%

The quantities are expressed in the coordinate system defined by the nautical angles \(\alpha \mathrm{=}33°\) and \(\beta \mathrm{=}12°\).

Identification

Reference Type

Reference

Tolerance

\(\mathrm{DZ}(\mathrm{A1})\)

“ANALYTIQUE”

7,895.10-5

8%

\(\mathit{MXX}(\mathit{A1})\)

“ANALYTIQUE”

1550.0

3%

\(\mathit{MYY}(\mathit{A1})\)

“ANALYTIQUE”

1550.0

3%

\(\mathit{MXY}(\mathit{A1})\)

“ANALYTIQUE”

0.1

\(\mathit{KXX}(\mathit{A1})\)

“ANALYTIQUE”

2,351.10-4

3%

\(\mathit{KYY}(\mathit{A1})\)

“ANALYTIQUE”

2,351.10-4

3%

\(\mathit{KXY}(\mathit{A1})\)

“ANALYTIQUE”

0.001

Identification

Reference type

Reference

Tolerance%

\(\mathit{MXX}\)

\(\mathit{M266}\)

\(\mathit{Point}1\)

“NON_REGRESSION”

1512.79

1.e-6

\(\mathit{MYY}\)

\(\mathit{M266}\)

\(\mathit{Point}1\)

“NON_REGRESSION”

1515.82

1.e-6

\(\mathit{MXY}\)

\(\mathit{M266}\)

\(\mathit{Point}1\)

“NON_REGRESSION”

-0.6749

1.e-6

\(\mathit{KXX}\)

\(\mathit{M266}\)

\(\mathit{Point}1\)

“NON_REGRESSION”

2.294 10-4

1.e-6

\(\mathit{KYY}\)

\(\mathit{M266}\)

\(\mathit{Point}1\)

“NON_REGRESSION”

2.301 10-4

1.e-6

\(\mathit{KXY}\)

\(\mathit{M266}\)

\(\mathit{Point}1\)

“NON_REGRESSION”

-1.601 10-7

1.e-6

6.4. notes#