6. D modeling#
6.1. Characteristics of modeling#
LCONTY
LCONTX
LSYMX
LSYMY
A1
A2
A3
Y
DALLE
X
A4

Q4GG modeling (QUAD4)
Boundary conditions:
. Side \(\mathit{A2A4}\): \(\mathit{DZ}\mathrm{=}0\)
. Side \(\mathit{A3A4}\): \(\mathrm{DZ}=0\)
Symmetry conditions
. Side \(\mathit{A1A2}\): \(\mathit{DY}\mathrm{=}\mathit{DRX}\mathrm{=}0\)
. Side \(\mathit{A1A3}\): \(\mathit{DX}\mathrm{=}\mathit{DRY}\mathrm{=}0\)
The slab is symmetric with respect to planes \((X\mathrm{=}0)\) and \((Y\mathrm{=}0)\), the calculations are carried out on a quarter of the slab.
6.2. Characteristics of the mesh#
Number of knots: 169
Number of meshes and type: 144 QUAD4
6.3. Tested sizes and results#
Identification |
Reference Type |
Reference |
% Tolerance |
\(\mathit{DZ}(\mathit{A1})\) |
“ANALYTIQUE” |
7,895.10-5 |
|
\(\mathrm{MXX}(\mathrm{A1})\) |
“ANALYTIQUE” |
1550 |
|
\(\mathrm{MYY}(\mathrm{A1})\) |
“ANALYTIQUE” |
1550 |
|
\(\mathrm{KXX}(\mathrm{A1})\) |
“ANALYTIQUE” |
2,351.10-4 |
|
\(\mathrm{KYY}(\mathrm{A1})\) |
“ANALYTIQUE” |
2,351.10-4 |
|
The quantities are expressed in the coordinate system defined by the nautical angles \(\alpha \mathrm{=}33°\) and \(\beta \mathrm{=}12°\).
Identification |
Reference Type |
Reference |
Tolerance |
\(\mathrm{DZ}(\mathrm{A1})\) |
“ANALYTIQUE” |
7,895.10-5 |
|
\(\mathit{MXX}(\mathit{A1})\) |
“ANALYTIQUE” |
1550.0 |
|
\(\mathit{MYY}(\mathit{A1})\) |
“ANALYTIQUE” |
1550.0 |
|
\(\mathit{MXY}(\mathit{A1})\) |
“ANALYTIQUE” |
0.1 |
|
\(\mathit{KXX}(\mathit{A1})\) |
“ANALYTIQUE” |
2,351.10-4 |
|
\(\mathit{KYY}(\mathit{A1})\) |
“ANALYTIQUE” |
2,351.10-4 |
|
\(\mathit{KXY}(\mathit{A1})\) |
“ANALYTIQUE” |
0.001 |
Identification |
Reference type |
Reference |
Tolerance% |
||
\(\mathit{MXX}\) |
\(\mathit{M266}\) |
\(\mathit{Point}1\) |
“NON_REGRESSION” |
1512.79 |
1.e-6 |
\(\mathit{MYY}\) |
\(\mathit{M266}\) |
\(\mathit{Point}1\) |
“NON_REGRESSION” |
1515.82 |
1.e-6 |
\(\mathit{MXY}\) |
\(\mathit{M266}\) |
\(\mathit{Point}1\) |
“NON_REGRESSION” |
-0.6749 |
1.e-6 |
\(\mathit{KXX}\) |
\(\mathit{M266}\) |
\(\mathit{Point}1\) |
“NON_REGRESSION” |
2.294 10-4 |
1.e-6 |
\(\mathit{KYY}\) |
\(\mathit{M266}\) |
\(\mathit{Point}1\) |
“NON_REGRESSION” |
2.301 10-4 |
1.e-6 |
\(\mathit{KXY}\) |
\(\mathit{M266}\) |
\(\mathit{Point}1\) |
“NON_REGRESSION” |
-1.601 10-7 |
1.e-6 |