9. G modeling#

9.1. Characteristics of modeling#

Solid rectangular section, width \(\mathrm{0.02m}\) and height \(\mathrm{0.05m}\). It is divided into two rectangles of respective heights \(\mathrm{0.025m}\), in order to test the calculation of the characteristics on groups of cells for a network consisting here of two parallel beams, between two floors distant from \(L=\mathrm{0.0002m}\) (which makes it possible to obtain characteristics (shear coefficient) very close to that of the complete section).

_images/100000000000022F00000284A76167CEDA12D86E.png

with b = 0.01, h=0.025

9.2. Characteristics of the mesh#

Number of stitches: 32 QUAD8

9.3. Benchmark solution#

Geometric characteristics for the complete section and for each half-section:

LIEU A CDG_Y CDG_Z IY_G IZ_G IYZ_G

All 1.00E-03 0.0 0.0 2.08E-07 3.33E-08 0.0

GR1 5.00E-04 0.0 -1.25E-02 2.60E-08 1.67E-08 0.0

GR2 5.00E-04 0.0 1.25E-02 2.60E-08 1.67E-08 0.0

LIEU Y_P Z_P IY_P IZ_P IYZ_P IY IZ

All 0.00E+00 0.00E+00 2.08E-07 3.33E-08 0.0 3.33E-08 2.08E-07

GR1 0.00E+00 0.00E+00 1.04E-07 1.67E-07 1.67E-08 0.0 1.67E-08 1.04E-07

GR2 0.00E+00 0.00E+00 1.04E-07 1.67E-07 1.67E-08 0.0 1.67E-08 1.04E-07

Shear coefficients: for each rectangular section: \({A}_{y}={A}_{z}=1.2\)

9.4. Tested sizes and results#

For the complete section, the geometric and mechanical characteristics are:

Identification

Reference

% difference

\(A\)

1.0000000E—03

0.00E+00

\(\mathit{ALPHA}\)

9.0000000E+01

0.00E+00

\(\mathit{AY}\)

1.2000000E+00

—0.004

\(\mathit{AZ}\)

1.2000000E+00

—0.065

\({\mathit{CDG}}_{Y}\)

0.0000000E+00

—1.03E—19

\({\mathit{CDG}}_{Z}\)

0.0000000E+00

—2.67E—19

\(\mathit{JX}\)

9.9805000E—08

—0.124

\(\mathit{EY}\)

0.0000000E+00

1.55E—18

\(\mathit{EZ}\)

0.0000000E+00

—4.79E—18

\({\mathit{IY}}_{G}\)

2.0833333E—07

1.60E—06

\({\mathit{IYZ}}_{G}\)

0.0000000E+00

—1.40E—24

\({\mathit{IZ}}_{G}\)

3.3333330E—08

1.00E—05

\(\mathit{PCTY}\)

0.0000000E+00

4.90E—18

\(\mathit{PCTZ}\)

0.0000000E+00

1.82E—18

\({Y}_{\mathit{MAX}}\)

2.5000000E—02

0.00E+00

\({Y}_{\mathit{MIN}}\)

—2.5000000E—02

0.00E+00

\({Z}_{\mathit{MAX}}\)

1.0000000E—02

1.73E—14

\({Z}_{\mathit{MIN}}\)

—1.0000000E—02

1.73E—14

For the two disjoint groups, we obtain:

Location

Identification

Reference

% difference

\(\mathit{GR2}\)

\(A\)

5.00000E—04

2.17E—14

\(\mathit{GR1}\)

\(A\)

5.00000E—04

4.34E—14

\(\mathit{TOUT}\)

\(\mathit{AY}\)

1.20000E+00

—0.064

\(\mathit{GR1}\)

\(\mathit{AY}\)

1.20000E+00

—0.065

\(\mathit{GR2}\)

\(\mathit{AY}\)

1.20000E+00

—0.065

\(\mathit{GR1}\)

\(\mathit{AZ}\)

1.20000E+00

—0.065

\(\mathit{GR2}\)

\(\mathit{AZ}\)

1.20000E+00

—0.065

\(\mathit{GR1}\)

\({\mathit{CDG}}_{Y}\)

0.00000E+00

1.59E—19

\(\mathit{GR2}\)

\({\mathit{CDG}}_{Y}\)

0.00000E+00

2.11E—19

\(\mathit{GR1}\)

\({\mathit{CDG}}_{Z}\)

1.25000E—02

—1.39E—14

\(\mathit{GR2}\)

\({\mathit{CDG}}_{Z}\)

—1.25000E—02

—4.16E—14

\(\mathit{GR1}\)

\({\mathit{IY}}_{G}\)

2.60417E—08

—1.28E—04

\(\mathit{GR2}\)

\({\mathit{IY}}_{G}\)

2.60417E—08

—1.28E—04

\(\mathit{GR1}\)

\({\mathit{IYZ}}_{G}\)

0.00000E+00

—1.58E—24

\(\mathit{GR2}\)

\({\mathit{IYZ}}_{G}\)

0.00000E+00

1.98E—24

\(\mathit{GR1}\)

\({\mathit{IZ}}_{G}\)

1.66667E—08

—2.00E—04

\(\mathit{GR2}\)

\({\mathit{IZ}}_{G}\)

1.66667E—08

—2.00E—04