6. D modeling#

6.1. Characteristics of modeling#

Hollow rectangular section. This modeling makes it possible to test MACR_CARA_POUTRE to calculate the geometric and mechanical characteristics of a flat area.

Two calculations are carried out:

  • the first is performed with the keyword SYME_Z = “OUI”, i.e. the section in question is obtained by symmetry around the \(Z\) axis (honeycomb section). In addition, the inertias are calculated with respect to the coordinate point \((\mathrm{0,}–0.025)\) (keyword ORIG_INER),

  • the second is performed without symmetry, on the mesh section, with a calculation of the inertias at the center of the mesh, \(C\) of coordinates \((0.005\mathrm{,0})\), and 2 different groups of cells, which each correspond to the vertical half of the mesh (on either side of the axis \(\mathit{Cz}\)).

6.2. Characteristics of the mesh#

40 QUAD4 stitches.

The coordinates of the node vertices of the rectangle are: \(\mathrm{N1}\) 0.00E+00 —2.50E—02 \(\mathrm{N2}\) 0.00E—02 0.00E—02 \(\mathrm{N3}\) 1.00E—02 2.50E—02 \(\mathrm{N4}\) 1.00E—02 —2.50E—02 \(\mathrm{N5}\) 2.50E—02 2.00E—02 2.00E—02 2.00E—02 2.00E—02 2.00E—02 2.00E—02 2.00E—02 2.00E—02 2.00E—02 2.00E—02 2.00E—02 2.00E—02 2.00E—02 2.00E—02 2.00E—02 2.00E—02 2.00E—02 2.00E—02 2.00E—02 2.00E—02 2.00 \(\mathrm{N6}\) \(\mathrm{N7}\) \(\mathrm{N8}\) —2.00E—02 \(\mathrm{N9}\) 0.00E+00 0.00E+00

_images/10000000000002BC0000028B609A77C24DAEB77E.png

6.3. Tested sizes and results#

For the symmetrized section following \(\mathit{OY}\), the geometric characteristics are:

Identification

Reference

% difference

\({A}_{M}\)

2.600E—04

—1.25E—13

\(A\)

5.200E—04

—1.25E—13

\(\mathit{ALPHA}\)

9.000E+01

0.00E+00

\({\mathit{CDG}}_{\text{Y-M}}\)

5.000E—03

—5.20E—14

\({\mathit{CDG}}_{Y}\)

0.000E+00

0.00E+00

\({\mathit{CDG}}_{\text{Z-M}}\)

0.000E+00

1.40E—18

\({\mathit{CDG}}_{Z}\)

0.000E+00

1.40E—18

\({\mathit{IY}}_{\text{G-M}}\)

7.21667E—08

—4.62E—05

\({\mathit{IY}}_{G}\)

1.44333E—07

2.31E—04

\({\mathit{IY}}_{P}\)

4.69333E—07

7.10E—05

\({\mathit{IYZ}}_{\text{G-M}}\)

0.000E+00

—4.33E—26

\({\mathit{IYZ}}_{G}\)

0.000E+00

—4.33E—26

\({\mathit{IZ}}_{\text{G-M}}\)

3.44667E—09

—9.67E—05

\({\mathit{IZ}}_{G}\)

1.98933E—08

1.68E—04

\(\mathit{IY}\)

1.98933E—08

1.68E—04

\({\mathit{IY}}_{P}\)

1.98933E—08

1.68E—04

\(\mathit{IZ}\)

1.44333E—07

2.31E—04

\({R}_{\mathit{MAX}}\)

2.69260E—02

—6.54E—04

\({Y}_{\mathit{MAX}}\)

2.500E—02

0.00E+00

\({Y}_{\mathit{MIN}}\)

—2.500E—02

0.00E+00

\({Z}_{\mathit{MAX}}\)

1.000E—02

1.73E—14

\({Z}_{\mathit{MIN}}\)

—1.000E—02

1.73E—14

For the non-symmetrized section, the geometric characteristics are:

Location

Identification

Reference

% difference

\(\mathit{TOUT}\)

\({\mathit{IY}}_{P}\)

3.60833E—08

9.24E—05

\(\mathit{GR1}\)

\({\mathit{IY}}_{P}\)

3.60833E—08

9.24E—05

\(\mathit{GR2}\)

\({\mathit{IY}}_{P}\)

7.21667E—08

—4.62E—05

\(\mathit{TOUT}\)

\({\mathit{IZ}}_{P}\)

1.72333E—09

1.93E—04

\(\mathit{GR1}\)

\({\mathit{IZ}}_{P}\)

1.72333E—09

1.93E—04

\(\mathit{GR2}\)

\({\mathit{IZ}}_{P}\)

3.44667E—09

—9.67E—05