2. Benchmark solution#

2.1. Calculation method used for the reference solution#

Analytical solution [bib1]: movements in \(B\) in the coordinate system \((\mathit{Oxyz})\) linked to the beam.

Single pull: \({u}_{x}=\frac{{F}_{x}L}{ES}\)

Simple bending: \({u}_{y}=\frac{{F}_{y}{L}^{3}}{3E{I}_{z}}\) \({t}_{z}=\frac{{L}^{2}{F}_{y}}{2E{I}_{z}}\)

Simple bending: \({u}_{z}=\frac{{F}_{z}{L}^{3}}{3E{I}_{y}}\) \({\theta }_{y}=\frac{-{L}^{2}{F}_{z}}{2E{I}_{y}}\)

Twist: \({\theta }_{x}=\frac{{M}_{x}L}{G{J}_{x}}\)

Pure flex: \({u}_{z}=\frac{-{M}_{y}{L}^{2}}{2E{I}_{y}}\) \({\theta }_{y}=\frac{{M}_{y}L}{E{I}_{y}}\)

Pure flex: \({u}_{y}=\frac{{M}_{z}{L}^{2}}{2E{I}_{z}}\) \({\theta }_{z}=\frac{{M}_{z}L}{E{I}_{z}}\)

Pressure: \({u}_{r}=\frac{P{a}^{2}r}{E({b}^{2}-{a}^{2})}\left[(1-\nu )+(1+\nu )\frac{{b}^{2}}{{r}^{2}}\right]\) calculated in \(r=\frac{a+b}{2}\)

actually \({u}_{r}\in \left[7.12E\text{-}06,7.78E\text{-}06\right]\) for \(r\in \left[b,a\right]\)

Here, the values are obtained with:

\(S=1.809557E\text{-}03{m}^{2}\) \({I}_{y}={I}_{z}=1.18707E\text{-}06{m}^{4}\) \({J}_{x}=2.37414E\text{-}06{m}^{4}\) \(L=5m\)

For generalized beam deformations, using the law of behavior, we obtain:

Single pull: \({\epsilon }_{x}=\frac{{F}_{x}}{ES}\)

Simple bending: \({\gamma }_{\mathrm{xy}}=\frac{{F}_{y}}{GS}\) \({\kappa }_{z}=\frac{{F}_{y}(L-x)}{E{I}_{z}}\)

Simple bending: \({\gamma }_{\mathrm{xz}}=\frac{{F}_{z}}{GS}\) \({\kappa }_{y}=\frac{{F}_{z}(L-x)}{E{I}_{y}}\)

Twist: \({\kappa }_{x}=\frac{{M}_{x}}{G{J}_{x}}\)

Pure flex: \({\kappa }_{y}=\frac{{M}_{y}}{E{I}_{y}}\)

Pure flex: \({\kappa }_{z}=\frac{{M}_{z}}{E{I}_{z}}\)

Gravity loading and line loading:

If \(p\) refers to the distributed load, the moment at the origin is equal to: \(M(o)=\frac{p{L}^{2}}{2}\) and the next displacement is set to \(z\) at the end B is equal to: \({u}_{z}(B)=\frac{p{L}^{4}}{8EI}\).

The thermal expansion load leads to an axial displacement (in the local direction \(x\)):

\({U}_{x}(B)=L(\alpha T)\)

The free expansion deformations of the pipe surface are simply, as a local coordinate system:

\({\epsilon }_{\mathrm{xx}}={\epsilon }_{\mathrm{yy}}=\alpha T\)

Finally, to validate the calculation of the mass matrix, a modal analysis of the first 12 natural modes (with embedding in \(O\)) must give, for the bending modes:

\({f}_{i}={(\frac{{\lambda }_{i}}{L})}^{2}\sqrt{\frac{EI}{\rho S}}\)

Mode

\({\lambda }_{i}\)

Frequency

1

1.87510407

2.9030234

2

4.69409113

18.192937

3

7.85475744

50.9407506

4

10.9955407

99.8235399

5

14.1371684

165.015464

6

17.2787596

246.504532

7

20.4203522

344.291453

8

23.5619449

458.376195

9

26.7035376

588.758758

10

29.8451302

735.43914

11

32.9867229

898.417343

12

36.1283155

1077.69337

2.2. Benchmark results#

  • Movement to point \(B\), efforts, stresses and deformations in the vicinity of point \(O\).

  • Generalized deformities.

  • Natural frequencies

2.3. Uncertainty about the solution#

Analytical solution.

2.4. Bibliographical references#

  1. Validation manual, test SSLL102 Embedded beam subjected to unit efforts [V3.01.102]