6. D modeling#

6.1. Characteristics of modeling#

10 elements TUYAU_6M, calculation with STAT_NON_LINE.

6.2. Characteristics of the mesh#

10 SEG3 stitches. The beam is oriented according to the vector (4, 3, 0).

6.3. Note on field content#

The stress fields at the Gauss points for element TUYAU, SIEF_ELGA, in the element’s local coordinate system, are organized as follows:

We store the values:

for each Gauss point in the length, \((n=\mathrm{1,}3)\)

for each integration point in the thickness, \((n=\mathrm{1,}{\mathrm{2N}}_{\mathrm{COU}}+1)\)

for each integration point on the circumference, \((n=\mathrm{1,}{\mathrm{2N}}_{\mathrm{SECT}}+1)\)

6 deformation or stress components:

EPXX EPYY EPZZ EPXY EPXZ EPYZ or

SIXX SIYY SIZZ SIXY SIXZ SIYZ

where \(X\) refers to the direction given by the element’s two vertex nodes, \(Y\) represents the angle \(\phi\) describing the circumference, and \(Z\) represents the radius. EPZZ and EPYZ corresponding to \({\epsilon }_{\mathrm{rr}}\), \({\epsilon }_{r\phi }\) in the case of deformations and SIZZ and SIYZ corresponding to \({\sigma }_{\mathrm{rr}}\), \({\sigma }_{r\phi }\) in the case of constraints are taken equal to zero.

In STAT_NON_LINE, the number of layers is variable, as is the number of sectors. Here, 3 layers and 16 sectors are used by analogy with modeling A.

6.4. Quantities tested and results of modeling D#

Load case

Size

Reference

% difference

1

XX

5.53E—06

—0.04

1

DY

4.14E—06

—0.04

2

DRZ

2.63E—02

—0.04

2

XX

—5.27E—02

—0.056

2

DY

7.02E—02

—0.056

3

DRX

1.58E—02

—0.04

3

DRY

—2.11E—02

—0.039

3

DZ

8.78E—02

—0.056

4

DRX

1.10E—02

0

4

DRY

8.21E—03

0

5

DRX

—6.32E—03

—0.04

5

DRY

8.42E—03

—0.04

5

DZ

—2.63E—02

—0.04

6

DRZ

1.05E—02

—0.039

6

XX

—1.58E—02

—0.04

6

DY

2.11E—02

—0.039

7

WO

7.38E—06

—2.946

Case of load

Field

Mesh

Point

Component

Reference

% difference

1

SIEF_ELGA

M18

z

z

SIXX

2.76E+05

—1.159

1

EFGE_ELNO

M18

1

1

N

5.00E+02

0.136

4

SIEF_ELGA

M18

1

1

SIXY

—6.75E+06

—0.159

4

SIEF_ELGA

M18

693

693

SIXY

—8.42E+06

0.049

4

EFGE_ELNO

M18

1

1

MT

5.00E+02

0

5

SIEF_ELGA

M18

479

479

SIXX

1.35E+07

—1.288

5

EFGE_ELNO

M18

1

1

MFY

5.00E+02

0.123

6

SIEF_ELGA

M18

471

471

SIXX

1.35E+07

—1.288

6

EFGE_ELNO

M18

1

1

MFZ

5.00E+02

0.123

7

SIEF_ELGA

M18

1

1

SIYY

4.56E+07

—0.641

7

SIEF_ELGA

M18

693

693

SIYY

3.56E+07

—0.371

Generalized deformations DEGE_ELNO:

Load case

Loads

Size

Reference

% difference

1

FX= 4.102

EPXX

1.38155E-06

—0.04

FY= 3.102

2

FX= —3.102

GAXY

3.5920E-06

32

FY= 4.102

KZ

1.0530E—02

—1.2

3

FZ= 5.102

GAXZ

3.5920E-06

32

KY

-1.0530E—02

—1.2

4

MX= 4.102

GAT

2.73783E-03

0

MY= 3.102

5

MX= —3.102

KY

2.1060E-03

—0.04

MY= 4.102

6

MZ= 5 102

KZ

2.1060E-03

—0.04

6.5. notes#

The shear values corresponding to the shear force are not accurate for this modeling. This is due to the second-order interpolation functions of this element, for beam movements and girder rotations. Since transverse beam shears are obtained by: \({\gamma }_{\mathrm{xy}}={\theta }_{z}-\frac{{\mathrm{du}}_{y}}{\mathrm{dx}}\), and because for simple bending, the rotations vary like polynomials of order 2, but the displacements, like polynomials of order 3, which is poorly approximated by the interpolation functions. The derivative of the displacements is therefore not precise.