Benchmark solution ===================== Calculation method used for the reference solution -------------------------------------------------------- Analytical solution [:ref:`bib1 `]: movements in :math:`B` in the coordinate system :math:`(\mathit{Oxyz})` linked to the beam. Single pull: :math:`{u}_{x}=\frac{{F}_{x}L}{ES}` Simple bending: :math:`{u}_{y}=\frac{{F}_{y}{L}^{3}}{3E{I}_{z}}` :math:`{t}_{z}=\frac{{L}^{2}{F}_{y}}{2E{I}_{z}}` Simple bending: :math:`{u}_{z}=\frac{{F}_{z}{L}^{3}}{3E{I}_{y}}` :math:`{\theta }_{y}=\frac{-{L}^{2}{F}_{z}}{2E{I}_{y}}` Twist: :math:`{\theta }_{x}=\frac{{M}_{x}L}{G{J}_{x}}` Pure flex: :math:`{u}_{z}=\frac{-{M}_{y}{L}^{2}}{2E{I}_{y}}` :math:`{\theta }_{y}=\frac{{M}_{y}L}{E{I}_{y}}` Pure flex: :math:`{u}_{y}=\frac{{M}_{z}{L}^{2}}{2E{I}_{z}}` :math:`{\theta }_{z}=\frac{{M}_{z}L}{E{I}_{z}}` Pressure: :math:`{u}_{r}=\frac{P{a}^{2}r}{E({b}^{2}-{a}^{2})}\left[(1-\nu )+(1+\nu )\frac{{b}^{2}}{{r}^{2}}\right]` calculated in :math:`r=\frac{a+b}{2}` actually :math:`{u}_{r}\in \left[7.12E\text{-}06,7.78E\text{-}06\right]` for :math:`r\in \left[b,a\right]` Here, the values are obtained with: :math:`S=1.809557E\text{-}03{m}^{2}` :math:`{I}_{y}={I}_{z}=1.18707E\text{-}06{m}^{4}` :math:`{J}_{x}=2.37414E\text{-}06{m}^{4}` :math:`L=5m` For generalized beam deformations, using the law of behavior, we obtain: Single pull: :math:`{\epsilon }_{x}=\frac{{F}_{x}}{ES}` Simple bending: :math:`{\gamma }_{\mathrm{xy}}=\frac{{F}_{y}}{GS}` :math:`{\kappa }_{z}=\frac{{F}_{y}(L-x)}{E{I}_{z}}` Simple bending: :math:`{\gamma }_{\mathrm{xz}}=\frac{{F}_{z}}{GS}` :math:`{\kappa }_{y}=\frac{{F}_{z}(L-x)}{E{I}_{y}}` Twist: :math:`{\kappa }_{x}=\frac{{M}_{x}}{G{J}_{x}}` Pure flex: :math:`{\kappa }_{y}=\frac{{M}_{y}}{E{I}_{y}}` Pure flex: :math:`{\kappa }_{z}=\frac{{M}_{z}}{E{I}_{z}}` Gravity loading and line loading: If :math:`p` refers to the distributed load, the moment at the origin is equal to: :math:`M(o)=\frac{p{L}^{2}}{2}` and the next displacement is set to :math:`z` at the end B is equal to: :math:`{u}_{z}(B)=\frac{p{L}^{4}}{8EI}`. The thermal expansion load leads to an axial displacement (in the local direction :math:`x`): :math:`{U}_{x}(B)=L(\alpha T)` The free expansion deformations of the pipe surface are simply, as a local coordinate system: :math:`{\epsilon }_{\mathrm{xx}}={\epsilon }_{\mathrm{yy}}=\alpha T` Finally, to validate the calculation of the mass matrix, a modal analysis of the first 12 natural modes (with embedding in :math:`O`) must give, for the bending modes: :math:`{f}_{i}={(\frac{{\lambda }_{i}}{L})}^{2}\sqrt{\frac{EI}{\rho S}}` .. csv-table:: "**Mode**", ":math:`{\lambda }_{i}` ", "**Frequency**" "1", "1.87510407", "2.9030234" "2", "4.69409113", "18.192937" "3", "7.85475744", "50.9407506" "4", "10.9955407", "99.8235399" "5", "14.1371684", "165.015464" "6", "17.2787596", "246.504532" "7", "20.4203522", "344.291453" "8", "23.5619449", "458.376195" "9", "26.7035376", "588.758758" "10", "29.8451302", "735.43914" "11", "32.9867229", "898.417343" "12", "36.1283155", "1077.69337" Benchmark results ---------------------- • Movement to point :math:`B`, efforts, stresses and deformations in the vicinity of point :math:`O`. • Generalized deformities. • Natural frequencies Uncertainty about the solution --------------------------- Analytical solution. Bibliographical references --------------------------- 1. Validation manual, test SSLL102 Embedded beam subjected to unit efforts [:ref:`V3.01.102 `]