5. C modeling#

5.1. Characteristics of modeling#

10 items TUYAU_6M.

5.2. Characteristics of the mesh#

10 SEG3 stitches. The beam is oriented according to the vector (4, 3, 0).

5.3. Note on the content of the fields#

The fields at the Gauss points for element TUYAU, EPSI_ELGA, and SIEF_ELGA, which provide the deformations and constraints at the integration points in the element’s local coordinate system, are organized as follows:

We store the values:

for each Gauss point in the length, \((n=\mathrm{1,}3)\)

for each integration point in the thickness, \((n=\mathrm{1,}{\mathrm{2N}}_{\mathrm{COU}}+1=7)\)

for each integration point on the circumference, \((n=\mathrm{1,}{\mathrm{2N}}_{\mathrm{SECT}}+1=33)\)

6 deformation or stress components:

EPXX EPYY EPZZ EPXY EPXZ EPYZ or

SIXX SIYY SIZZ SIXY SIXZ SIYZ

where \(X\) refers to the direction given by the element’s two vertex nodes, \(Y\) represents the angle \(\phi\) describing the circumference, and \(Z\) represents the radius. EPZZ and EPYZ corresponding to \({\epsilon }_{\mathrm{rr}}\), \({\epsilon }_{r\phi }\) in the case of deformations and SIZZ and SIYZ corresponding to \({\sigma }_{\mathrm{rr}}\), \({\sigma }_{r\phi }\) in the case of constraints are taken equal to zero.

For MECA_STATIQUE or MACRO_ELAS_MULT, the number of layers is fixed, and equal to 3, and the number of sectors is equal to 16.

EFGE_ELNO represents the efforts generalized to the 3 nodes in the classical way: N, VY, VZ, MT, MFY, MFZ.

5.4. Quantities tested and results of the C modeling#

Load case

Size

Reference

% difference

1

\({F}_{X}=4E+02\)

DX

5.53E—06

—0.04

1

\({F}_{Y}=3E+02\)

DY

4.14E—06

—0.04

2

\({F}_{X}=–3E+02\)

DRZ

2.63E—02

—0.04

2

\({F}_{Y}=4E+02\)

DX

—5.27E—02

—0.056

2

DY

7.02E—02

—0.056

3

\({F}_{Z}=5E+02\)

DRX

1.58E—02

—0.04

3

DRY

—2.11E—02

—0.039

3

DZ

8.78E—02

—0.056

4

\({M}_{X}=4E+02\)

DRX

1.10E—02

0

4

\({M}_{Y}=3E+02\)

DRY

8.21E—03

0

5

\({M}_{X}=–3E+02\)

DRX

—6.32E—03

—0.04

5

\({M}_{Y}=4E+02\)

DRY

8.42E—03

—0.04

5

DZ

—2.63E—02

—0.04

6

\({M}_{Z}=5E+02\)

DRZ

1.05E—02

—0.039

6

XX

—1.58E—02

—0.04

6

DY

2.11E—02

—0.039

7: pressure

WO

7.38E—06

—2.946

8: gravity

DZ

—4.646E-02

0.09

9: distributed load

DZ

—4.646E-02

0.09

Case of load

Field

Mesh

Point

Component

Reference

% difference

1

EFGE_ELNO

M18

1

1

N

5.00E+02

0.136

1

EPSI_ELGA

M18

1

1

EPXX

1.38E—06

—0.031

1

SIEF_ELGA

M18

1

1

SIXX

2.76E+05

—1.159

4

EFGE_ELNO

M18

1

1

MT

5.00E+02

0

4

EPSI_ELGA

M18

1

1

EPXY

—8.77E—05

—0.102

4

EPSI_ELGA

M18

693

693

EPXY

—1.09E—04

0.049

4

SIEF_ELGA

M18

1

1

SIXY

—6.75E+06

—0.159

4

SIEF_ELGA

M18

693

693

SIXY

—8.42E+06

0.049

5

EFGE_ELNO

M18

1

1

MFY

5.00E+02

0.123

5

EPSI_ELGA

M18

479

479

EPXX

6.74E—05

—0.046

5

SIEF_ELGA

M18

479

479

SIXX

1.35E+07

—1.288

6

EFGE_ELNO

M18

1

1

MFZ

5.00E+02

0.123

6

EPSI_ELGA

M18

471

471

EPXX

6.74E—05

—0.046

6

SIEF_ELGA

M18

471

471

SIXX

1.35E+07

—1.288

7

EPSI_ELGA

M18

1

1

EPYY

2.28E—04

—1.716

7

EPSI_ELGA

M18

693

693

EPYY

1.78E—04

0.741

7

SIEF_ELGA

M18

1

1

SIYY

4.56E+07

—0.641

7

SIEF_ELGA

M18

693

693

SIYY

3.56E+07

—0.371

8

EFGE_ELNO

M1

1

1

MFY

1764.3

2

9

EFGE_ELNO

M1

1

1

MFY

1764.3

2

Generalized deformations DEGE_ELNO:

Load case

Loads

Size

Reference

% difference

1

FX= 4.102

EPXX

1.38155E-06

—0.04

FY= 3.102

2

FX= —3.102

GAXY

3.5920E-06

32

FY= 4.102

KZ

1.0530E—02

—1.2

3

FZ= 5.102

GAXZ

3.5920E-06

32

KY

—1.0530E—02

—1.2

4

MX= 4.102

GAT

2.73783E-03

0

MY= 3.102

5

MX= —3.102

KY

2.1060E-03

—0.04

MY= 4.102

6

MZ= 5 102

KZ

2.1060E-03

—0.04

Natural frequency

Reference

% difference

1

2.90229

0.05

2

2.90229

0.05

3

18.18967

0.08

4

18.18967

0.08

5

50.99367

0.02

6

50.99367

0.02

7

99.81783

0.2

8

99.81783

0.2

9

157.0190

0.001

10

164.9922

0.3

11

164.9922

0.3

12

253.185

2

5.5. notes#

The shear values corresponding to the shear force are not accurate for this modeling. This is due to the second-order interpolation functions of this element, for beam movements and girder rotations. Since transverse beam shears are obtained by: \({\gamma }_{\mathrm{xy}}={\theta }_{z}-\frac{{\mathrm{du}}_{y}}{\mathrm{dx}}\), and because for simple bending, the rotations vary like polynomials of order 2, but the displacements, like polynomials of order 3, which is poorly approximated by the interpolation functions. The derivative of the displacements is therefore not precise.