2. Benchmark solution#

2.1. Calculation method used for the reference solution#

The reference solution is obtained analytically for a Timoshenko beam, taking into account the shear force deformation and the rotary inertia of the sections.

The solution is developed in a series of clean modes. Theoretical aspects are developed in the reference given in 2.4.

2.1.2. Harmonic response#

The amplitude and the phase of the arrow W are given by

\(W(x)=\sum _{n=1}^{+\infty }{p}_{n}\left[\sum _{m=1}^{2}\frac{1}{{\mu }_{m}({\omega }_{m}^{2}-{\omega }^{2}+2i{ϵ}_{m}{\omega }_{m}\omega )}\right]\mathrm{sin}({k}_{n}x)\)

with

\({p}_{n}=\frac{2{p}_{0}}{n\pi }\left[1-{(-1)}^{n}\right]\)

2.2. Benchmark results#

Position

Arrow \(W\)

Amplitude (\(m\))

Phase

\(x=\frac{L}{4}\)

\(2.136\times {10}^{-5}\)

\(22.4\text{°}\)

\(x=\frac{L}{2}\)

\(1.342\times {10}^{-5}\)

\(-121.5\text{°}\)

\(x=3\frac{L}{4}\)

\(2.136\times {10}^{-5}\)

\(22.4\text{°}\)

The quantities actually tested in the test case are the parts real and imaginary whose values are given below.

Position

Arrow \(W\)

Real part (\(m\))

Imaginary part (\(m\))

\(x=\frac{L}{4}\)

\(-1.9599467159360556\times {10}^{-5}\)

\(-8.4917893914738073\times {10}^{-6}\)

\(x=\frac{L}{2}\)

\(-6.9993870268574731\times {10}^{-6}\)

\(-1.1450108350939712\times {10}^{-5}\)

\(x=3\frac{L}{4}\)

\(-1.9599467159360556\times {10}^{-5}\)

\(-8.4917893914738073\times {10}^{-6}\)

2.3. Uncertainty about the solution#

  • Analytical solution.

2.4. Bibliographical references#

  • ROBERT G., Analytical solutions in structural dynamics, Samtech Report No. 121, Liège, 1996.