Benchmark solution ===================== Calculation method used for the reference solution -------------------------------------------------------- The reference solution is obtained analytically for a Timoshenko beam, taking into account the shear force deformation and the rotary inertia of the sections. The solution is developed in a series of clean modes. Theoretical aspects are developed in the reference given in :ref:`2.4 `. Modal basis ~~~~~~~~~~~ Define the following dimensionless quantities: :math:`{\lambda }_{n}={k}_{n}L` wavelengths :math:`{\Omega }_{n}=\frac{\rho A{L}^{4}}{\mathit{EI}}{\omega }_{n}^{2}` eigenvalues :math:`j=\frac{I}{A{L}^{2}}` rotary inertia :math:`g=\frac{\mathit{EI}}{k\text{'}AG{L}^{2}}` shear coefficient Each specific mode of wave number :math:`{k}_{n}` is characterized by the following quantities: Natural frequencies: :math:`{\Omega }_{\mathrm{1,2}}=\frac{\rho A{L}^{4}}{\mathit{EI}}{\omega }_{\mathrm{1,2}}^{2}=\frac{(g+j){\lambda }_{n}^{2}+1\pm \sqrt{{(g-j)}^{2}{\lambda }_{n}^{4}+2(g+j){\lambda }_{n}^{2}+1}}{2gj}` with :math:`{\lambda }_{n}=n\pi`, :math:`n=\mathrm{1,}\mathrm{2,}\mathrm{3,}\mathrm{...}`, *(the indices 1 and 2 correspond to the + and — signs in front of the root) .* The generalized masses: :math:`{\mu }_{\mathrm{1,2}}=\rho A={\left({k}_{n}-\frac{{\omega }_{\mathrm{1,2}}^{2}\rho }{{k}_{n}k\text{'}G}\right)}^{2}\rho I`. Critical depreciation percentages: :math:`{ϵ}_{\mathrm{1,2}}=\frac{1}{2}\left(\alpha {\omega }_{\mathrm{1,2}}+\frac{\beta }{{\omega }_{\mathrm{1,2}}}\right)` Harmonic response ~~~~~~~~~~~~~~~~~~~~ The amplitude and the phase of the arrow W are given by :math:`W(x)=\sum _{n=1}^{+\infty }{p}_{n}\left[\sum _{m=1}^{2}\frac{1}{{\mu }_{m}({\omega }_{m}^{2}-{\omega }^{2}+2i{ϵ}_{m}{\omega }_{m}\omega )}\right]\mathrm{sin}({k}_{n}x)` with :math:`{p}_{n}=\frac{2{p}_{0}}{n\pi }\left[1-{(-1)}^{n}\right]` Benchmark results ---------------------- +----------------------+-----------------------------+----------------------+ |Position |Arrow :math:`W` | + +-----------------------------+----------------------+ | |Amplitude (:math:`m`) |Phase | +----------------------+-----------------------------+----------------------+ |:math:`x=\frac{L}{4}` |:math:`2.136\times {10}^{-5}`|:math:`22.4\text{°}` | +----------------------+-----------------------------+----------------------+ |:math:`x=\frac{L}{2}` |:math:`1.342\times {10}^{-5}`|:math:`-121.5\text{°}`| +----------------------+-----------------------------+----------------------+ |:math:`x=3\frac{L}{4}`|:math:`2.136\times {10}^{-5}`|:math:`22.4\text{°}` | +----------------------+-----------------------------+----------------------+ The quantities actually tested in the test case are the parts real and imaginary whose values are given below. +----------------------+-------------------------------------------+-------------------------------------------+ |Position |Arrow :math:`W` | + +-------------------------------------------+-------------------------------------------+ | |Real part (:math:`m`) |Imaginary part (:math:`m`) | +----------------------+-------------------------------------------+-------------------------------------------+ |:math:`x=\frac{L}{4}` |:math:`-1.9599467159360556\times {10}^{-5}`|:math:`-8.4917893914738073\times {10}^{-6}`| +----------------------+-------------------------------------------+-------------------------------------------+ |:math:`x=\frac{L}{2}` |:math:`-6.9993870268574731\times {10}^{-6}`|:math:`-1.1450108350939712\times {10}^{-5}`| +----------------------+-------------------------------------------+-------------------------------------------+ |:math:`x=3\frac{L}{4}`|:math:`-1.9599467159360556\times {10}^{-5}`|:math:`-8.4917893914738073\times {10}^{-6}`| +----------------------+-------------------------------------------+-------------------------------------------+ Uncertainty about the solution --------------------------- * Analytical solution. .. _RefNumPara__5069_280392679: Bibliographical references --------------------------- * ROBERT G., Analytical solutions in structural dynamics, Samtech Report No. 121, Liège, 1996.