2. Benchmark solution#

2.1. Calculation method used for the reference solution#

A detailed analytical solution is available in reference [bib1].

The following notations are adopted:

\(E\)

:

Young’s modulus

\(\rho\)

:

density

\(L\)

:

bar length

\(A\)

:

bar section

\(N\)

:

normal force directed along the \(X\) axis

\(\alpha ,\beta\)

:

Rayleigh damping coefficients

We also ask:

\({\omega }_{n}=(\mathrm{2n}-1)\frac{\pi }{2}\) where \(n=\mathrm{1,2}\mathrm{,3},\mathrm{...}\)

\({\varepsilon }_{n}=\frac{1}{2}(\alpha {\omega }_{n}+\beta /{\omega }_{n})\)

The displacement to any point \(M(x)\) is given by:

\(u(x,t)=\frac{\mathrm{Nx}}{\mathrm{EA}}+\frac{\mathrm{8NL}}{{\pi }^{2}\mathrm{EA}}\underset{n=1}{\overset{\infty }{\Sigma }}{(-1)}^{n}\frac{{e}^{-{\omega }_{n}{\varepsilon }_{n}t}}{{(\mathrm{2n}-1)}^{2}}\left\{\mathrm{cos}(\sqrt{1-{\varepsilon }_{n}^{2}}{\omega }_{n}t)+\frac{{\varepsilon }_{n}}{\sqrt{1-{\varepsilon }_{n}^{2}}}\mathrm{sin}(\sqrt{1-{\varepsilon }_{n}^{2}}{\omega }_{n}t)\right\}\)

2.2. Benchmark results#

The values of the displacement fields, speed and acceleration fields of the free end (node \(\mathrm{N10}\)) are valid at time \(t=0.0195s\):

Movement \((m)\)

Speed \((\mathrm{m.}{s}^{-1})\)

Acceleration \((\mathrm{m.}{s}^{-2})\)

Calculation without depreciation

—8.3766x10—7

1.6753 x 10—3

0

Calculation with structural depreciation

—1.00462x10—6

1.20384x10—3

—1.21564

2.3. Uncertainty about the solution#

Analytical solution.

2.4. Bibliographical references#

    1. ROBERT: Analytical solutions in structural dynamics. Samtech Report No. 121, March 1996.