Benchmark solution ===================== Calculation method used for the reference solution -------------------------------------------------------- A detailed analytical solution is available in reference [:ref:`bib1 `]. The following notations are adopted: .. csv-table:: ":math:`E` ", ":", "Young's modulus" ":math:`\rho` ", ":", "density" ":math:`L` ", ":", "bar length" ":math:`A` ", ":", "bar section" ":math:`N` ", ":", "normal force directed along the :math:`X` axis" ":math:`\alpha ,\beta` ", ":", "Rayleigh damping coefficients" We also ask: :math:`{\omega }_{n}=(\mathrm{2n}-1)\frac{\pi }{2}` where :math:`n=\mathrm{1,2}\mathrm{,3},\mathrm{...}` :math:`{\varepsilon }_{n}=\frac{1}{2}(\alpha {\omega }_{n}+\beta /{\omega }_{n})` The displacement to any point :math:`M(x)` is given by: :math:`u(x,t)=\frac{\mathrm{Nx}}{\mathrm{EA}}+\frac{\mathrm{8NL}}{{\pi }^{2}\mathrm{EA}}\underset{n=1}{\overset{\infty }{\Sigma }}{(-1)}^{n}\frac{{e}^{-{\omega }_{n}{\varepsilon }_{n}t}}{{(\mathrm{2n}-1)}^{2}}\left\{\mathrm{cos}(\sqrt{1-{\varepsilon }_{n}^{2}}{\omega }_{n}t)+\frac{{\varepsilon }_{n}}{\sqrt{1-{\varepsilon }_{n}^{2}}}\mathrm{sin}(\sqrt{1-{\varepsilon }_{n}^{2}}{\omega }_{n}t)\right\}` Benchmark results ---------------------- The values of the displacement fields, speed and acceleration fields of the free end (node :math:`\mathrm{N10}`) are valid at time :math:`t=0.0195s`: .. csv-table:: "", "**Movement** :math:`(m)` ", "**Speed** :math:`(\mathrm{m.}{s}^{-1})` ", "**Acceleration** :math:`(\mathrm{m.}{s}^{-2})`" "Calculation without depreciation", "—8.3766x10—7", "1.6753 x 10—3", "0" "Calculation with structural depreciation", "—1.00462x10—6", "1.20384x10—3", "—1.21564" Uncertainty about the solution --------------------------- Analytical solution. Bibliographical references --------------------------- 1. G. ROBERT: Analytical solutions in structural dynamics. Samtech Report No. 121, March 1996.