2. Reference solution#
The reference solution comes from guide VPCS.
2.1. Calculation method used for the reference solution#
The numerical integration selected to obtain this solution is based on a finite difference integration diagram, such as the improved \(\beta\) -Newmark method, with a \(\mathrm{0.001s}\) [bib2] time step.
\(\left[\frac{1}{\Delta {t}^{2}}M+\frac{1}{2\Delta t}C+\frac{1}{3}K\right]{u}_{n+2}\mathrm{=}\frac{1}{3}({F}_{n+2}+{F}_{n+1}+{F}_{n})+\left[\frac{2}{\Delta {t}^{2}}M\mathrm{-}\frac{1}{3}K\right]{u}_{n+1}+\left[\frac{1}{\Delta {t}^{2}}M+\frac{1}{2\Delta t}C\mathrm{-}\frac{1}{3}K\right]{u}_{n}\)
The movement of point \(4\) as a function of time looks like this:
Figure 2.1-a: Point 4: displacement as a function of time
2.2. Benchmark results#
Move along \(x\) from point \({P}_{4}\).
2.3. Uncertainty about the solution#
Accuracy of the Newmark schema.
2.4. Bibliographical references#
File SDLD22 /90 from the VPCS commission.
NEWMARK N.M.: « A method of computation for structural dynamics », proceeding ASCE J.Eng. Mech. Div E-3, July 1959, pp 67-94.