1. Reference problem#
1.1. Geometry#
Point masses: |
\({m}_{{P}_{1}}={m}_{{P}_{2}}={m}_{{P}_{3}}=\dots \dots ={m}_{{P}_{8}}=m\) |
Link stiffness: |
\({k}_{A{P}_{1}}={k}_{{P}_{1}{P}_{2}}={k}_{{P}_{2}{P}_{3}}=\dots \dots ={k}_{{P}_{8}B}=k\) |
Viscous damping: |
\({c}_{A{P}_{1}}\mathrm{=}{c}_{{P}_{1}{P}_{2}}\mathrm{=}{c}_{{P}_{2}{P}_{3}}\mathrm{=}\dots \dots \mathrm{=}{c}_{{P}_{8}B}\mathrm{=}c\) |
1.2. Material properties#
Linear elastic translation spring |
\(k={10}^{5}N/m\) |
Point mass |
\(m=10\mathrm{kg}\) |
Unidirectional viscous damping |
\(c=50N/(m/s)\) |
1.3. Boundary conditions and loads#
Boundary conditions: embedded \(A\) and \(B\) points (\(u=0\)).
Loading: force concentrated at point \({P}_{4}\) in the form of a niche:
1.4. Initial conditions#
For \(t=0\), in every way, \(u=0\) and \(\frac{\mathit{du}}{\mathit{dt}}\mathrm{=}0\).