Reference solution ===================== The reference solution comes from guide VPCS. Calculation method used for the reference solution -------------------------------------------------------- The numerical integration selected to obtain this solution is based on a finite difference integration diagram, such as the improved :math:`\beta` -Newmark method, with a :math:`\mathrm{0.001s}` [:ref:`bib2 `] time step. :math:`\left[\frac{1}{\Delta {t}^{2}}M+\frac{1}{2\Delta t}C+\frac{1}{3}K\right]{u}_{n+2}\mathrm{=}\frac{1}{3}({F}_{n+2}+{F}_{n+1}+{F}_{n})+\left[\frac{2}{\Delta {t}^{2}}M\mathrm{-}\frac{1}{3}K\right]{u}_{n+1}+\left[\frac{1}{\Delta {t}^{2}}M+\frac{1}{2\Delta t}C\mathrm{-}\frac{1}{3}K\right]{u}_{n}` The movement of point :math:`4` as a function of time looks like this: .. image:: images/1003165E00002DE4000015CF04B80C1E767FDAB9.svg :width: 591 :height: 281 .. _RefImage_1003165E00002DE4000015CF04B80C1E767FDAB9.svg: **Figure 2.1-a: Point 4: displacement as a function of time** Benchmark results ---------------------- Move along :math:`x` from point :math:`{P}_{4}`. Uncertainty about the solution --------------------------- Accuracy of the Newmark schema. Bibliographical references --------------------------- 1. File SDLD22 /90 from the VPCS commission. 2. NEWMARK N.M.: "A method of computation for structural dynamics", proceeding ASCE J.Eng. Mech. Div E-3, July 1959, pp 67-94.