Reference problem ===================== Geometry --------- .. image:: images/100011200000298C0000094DFC99D4915D1C0F90.svg :width: 536 :height: 120 .. _RefImage_100011200000298C0000094DFC99D4915D1C0F90.svg: .. csv-table:: "Point masses:", ":math:`{m}_{{P}_{1}}={m}_{{P}_{2}}={m}_{{P}_{3}}=\dots \dots ={m}_{{P}_{8}}=m`" "Link stiffness:", ":math:`{k}_{A{P}_{1}}={k}_{{P}_{1}{P}_{2}}={k}_{{P}_{2}{P}_{3}}=\dots \dots ={k}_{{P}_{8}B}=k`" "Viscous damping:", ":math:`{c}_{A{P}_{1}}\mathrm{=}{c}_{{P}_{1}{P}_{2}}\mathrm{=}{c}_{{P}_{2}{P}_{3}}\mathrm{=}\dots \dots \mathrm{=}{c}_{{P}_{8}B}\mathrm{=}c`" Material properties ----------------------- .. csv-table:: "Linear elastic translation spring", ":math:`k={10}^{5}N/m`" "Point mass", ":math:`m=10\mathrm{kg}`" "Unidirectional viscous damping", ":math:`c=50N/(m/s)`" Boundary conditions and loads ------------------------------------- Boundary conditions: embedded :math:`A` and :math:`B` points (:math:`u=0`). Loading: force concentrated at point :math:`{P}_{4}` in the form of a niche: .. csv-table:: "Point :math:`{P}_{4}` "," :math:`{F}_{{x}_{4}}=F(t)` "," :math:`0\le t\le \mathrm{1s}` "," :math:`F(t)=\mathrm{1N}`" "", "", ":math:`t>\mathrm{1s}` "," :math:`F(t)=0.`" "Other points :math:`{P}_{i}` "," :math:`{F}_{{x}_{i}}=0` ", ", "" Initial conditions -------------------- For :math:`t=0`, in every way, :math:`u=0` and :math:`\frac{\mathit{du}}{\mathit{dt}}\mathrm{=}0`.