1. Reference problem#
1.1. Geometry#
The geometry of the C modeling is that of a 10-grain aggregate generated by a Python procedure based on Voronoi cells. Edge cutting planes are defined to impose boundary conditions.

The other models are carried out on hardware points (SIMU_POINT_MAT).
1.2. Material properties#
1.2.1. Modeling B: single crystal#
This modeling makes it possible to validate the single-crystal elasto-visco-plastic model with implicit integration, by comparison with model MONOCRISTAL on a hardware point.
The material coefficients are:
E |
208000 |
NAKED |
0.3 |
G |
80000 |
N |
10 |
K |
25 |
C |
14363 |
R_0 |
66,62 |
Q |
11,43 |
B |
2,1 |
D |
494 |
The Mfront files defining the behavior are:
MonoCrystal_ CFC .mfront
1.2.2. C modeling: single crystal on an aggregate of 10 grains#
This modeling makes it possible to validate the single-crystal elasto-visco-plastic model with implicit integration, and complete definition of the family of sliding systems and the interaction matrix, compared to model MONOCRISTAL on a 10-grain aggregate.
The material coefficients are:
E |
210000 |
NAKED |
0.3 |
G |
80769.23 |
N |
12 |
K |
5 |
C |
0 |
R_0 |
250 |
Q |
55 |
B |
12 |
D |
0 |
The Mfront files defining the behavior are:
MonoCrystal_ CFC .mfront
1.2.3. Modeling D: polycrystal homogenized on 30 grains#
This modeling makes it possible to validate the polycrystalline elasto-visco-plastic model with explicit integration, by comparison with model POLYCRISTAL on a hardware point with 30 grains. The material coefficients are:
E |
145200 |
NAKED |
0.3 |
G |
55846.15 |
N |
10 |
K |
40 |
C |
0 |
R_0 |
75.5 |
Q |
9.77 |
B |
19.34 |
D |
0 |
The Mfront files defining the behavior are:
Polycrystal_mc.mfront
Polycrystal_Orientation.mfront
The « Polycrystal_Orientation.mfront » file defines 30 Euler angle triplets in degrees.
1.2.4. E modeling: single crystal DD_CFC#
This modeling makes it possible to validate the monocrystalline model DD_CFC on a hardware point, in comparison with MONO_DD_CFC. The material coefficients are:
E |
208000 |
NAKED |
0.3 |
G |
80000 |
TAU_F |
105 |
Y |
2.5E-7 |
N |
5 |
GAMMA_0 |
1.E-3 |
A |
0.13 |
B |
0.005 |
RHOREF |
1.E6 |
ALPHA |
0.35 |
BETA |
2,54E-7 |
G |
80000 |
The initial dislocation density is 1.E6. The analytical solution is contained in the file mfron03e.30. The Mfront files defining the behavior are:
MonoCrystal DDCFC .mfront
MonoCrystal_ DD_CFC_InteractionMatrix .mfront
1.2.5. F modeling: homogenized polycrystal of type DD_CFC on 30 grains#
This modeling makes it possible to validate the homogenized polycrystalline model DD_CFC on a hardware point with 30 grains, in comparison with POLYCRISTAL. The material coefficients are:
E |
208000 |
NAKED |
0.3 |
G |
80000 |
TAU_F |
80 |
Y |
2.5E-7 |
N |
20 |
GAMMA_0 |
1.E-3 |
A |
0.13 |
B |
0.005 |
RHOREF |
1.E6 |
ALPHA |
0.35 |
BETA |
2,54E-7 |
G |
80000 |
The initial dislocation density is 1.E5. The Mfront files defining the behavior are:
PolyCrystal DDCFC .mfront
MonoCrystal_ DD_CFC_InteractionMatrix .mfront
The « Polycrystal_Orientation.mfront » file defines 30 Euler angle triplets in degrees.
1.2.6. G modeling: single crystal DD_CFC_IRRA#
This modeling makes it possible to validate the model DD_CFC_IRRA on a hardware point, in comparison with the behavior MONO_DD_CFC_IRRA. The material coefficients are:
E |
208000 |
NAKED |
0.3 |
G |
80000 |
TAU_F |
80 |
Y |
2.5E-7 |
N |
20 |
GAMMA_0 |
1.E-3 |
A |
0.13 |
B |
0.005 |
RHOREF |
1.E6 |
ALPHA |
0.35 |
BETA |
2,54E-7 |
G |
80000 |
ome_void |
1000, |
PHI_LOOP |
5,9E-6 |
ALP_VOID |
0 |
ALP_LOOP |
0,1 |
ome_sat |
0 |
PHI_SAT |
4, E-2 |
XI_IRRA |
10 |
DZ_IRRA |
1, E7 |
The initial internal variables are:
RHO_0 =1, E5
RHO_LOOPS =7, 4E13
PHI_VOIDS =1.e-3
The Mfront files defining the behavior are:
Mono DDCFC_Irra .mfront
MonoCrystal_ DD_CFC_InteractionMatrix .mfront
1.2.7. H modeling: single crystal DD_CC#
This modeling makes it possible to validate the DD_CCsur model at a hardware point, by comparison with the MONO_DD_CC behavior of the ssnd110b test. The material coefficients are:
E (GPa) |
236-0.0459* TEMP |
NAKED |
0.35 |
G |
80000 |
B |
2,48e-7 |
GH |
1.e11 |
DeltaG0 |
0.84 |
TAU_0 (MPa) |
363 |
TAU_F |
0 |
gamma0 |
1, e-6 |
n |
50 |
rho_ini |
1, E5*b**2 |
D |
1.e-5 |
d_lat |
|
y_at |
2.e-6 |
K_f |
30, |
K_self |
100 |
k_boltz |
8.62E-5 |
epsi_1 |
3e-4 |
G |
80000 |
a_self |
0.1024 |
a_coli |
0.7 |
a_ncol |
0,1 |
The simulation temperature is 50 K.
The initial dislocation density is 1.E5 (multiplied by BETA **2).
The Mfront files defining the behavior are:
MonoCrystal DDCC .mfront
MonoCrystal_ DD_CC_InteractionMatrix .mfront
MonoCrystal_ DD_CC_SlidingSystems .mfront
The monocrystal is defined according to the -1,4,9 orientation. It is subject to an imposed deformation \({\epsilon }_{\mathit{zz}}\).
1.2.8. Modeling I: single crystal DD_CC_IRRA#
This modeling makes it possible to validate model DD_CC_IRRA on a hardware point, by comparison with the MONO_DD_CC_IRRA behavior of the ssnd110d test. The material coefficients are:
E (GPa) |
236-0.0459* TEMP |
NAKED |
0.35 |
G |
80000 |
B |
2,48e-7 |
GH |
1.e11 |
DeltaG0 |
0.84 |
TAU_0 (MPa) |
363 |
TAU_F |
20 |
gamma0 |
1, e-3 |
n |
20 |
rho_ini |
1, E5*b**2 |
D |
1.e-5 |
d_lat |
|
y_at |
1.e-6 |
K_f |
30, |
K_self |
100 |
k_boltz |
8.62E-5 |
epsi_1 |
1e-5 |
G |
80000 |
a_irr |
0.3 |
xi_irr |
4 |
a_self |
0.1024 |
a_coli |
0.7 |
a_ncol |
0,1 |
The simulation temperature is 250 K.
The monocrystal is subjected to a tensile force imposed according to the orientation 1,5,9
The initial dislocation density is 1.E5 (multiplied by BETA **2). The Mfront files defining the behavior are:
Mono DDCC_Irra .mfront
MonoCrystal_ DD_CC_InteractionMatrix .mfront
MonoCrystal_ DD_CC_SlidingSystems .mfront
1.2.9. K modeling: homogenized polycrystal DD_CC#
This modeling makes it possible to validate the homogenized polycrystalline model DD_CCsur a hardware point with 30 grains, by comparison with the POLYCRISTALdu ssnv194D test behavior. The material coefficients are:
E (GPa) |
236-0.0459* TEMP |
NAKED |
0.35 |
G |
80000 |
B |
2,48e-7 |
GH |
1.e11 |
DeltaG0 |
0.84 |
TAU_0 (MPa) |
363 |
TAU_F |
0 |
gamma0 |
1, e-6 |
n |
50 |
rho_ini |
1, E5*b**2 |
D |
1.e-5 |
d_lat |
|
y_at |
2.e-6 |
K_f |
30, |
K_self |
100 |
k_boltz |
8.62E-5 |
epsi_1 |
3e-4 |
G |
80000 |
a_self |
0.1024 |
a_coli |
0.7 |
a_ncol |
0,1 |
The Mfront files defining the behavior are:
PolyCrystal DDCC .mfront
PolyCrystal_ DD_CC_SlidingSystems .mfront
MonoCrystal_ DD_CC_InteractionMatrix .mfront