Reference problem ===================== Geometry --------- The geometry of the C modeling is that of a 10-grain aggregate generated by a Python procedure based on Voronoi cells. Edge cutting planes are defined to impose boundary conditions. .. image:: images/10000000000004F90000027712DF9B4A647D3410.png :width: 6.2043in :height: 3.0563in .. _RefImage_10000000000004F90000027712DF9B4A647D3410.png: The other models are carried out on hardware points (SIMU_POINT_MAT). Material properties ------------------------ Modeling B: single crystal ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ This modeling makes it possible to validate the single-crystal elasto-visco-plastic model with implicit integration, by comparison with model MONOCRISTAL on a hardware point. The material coefficients are: .. csv-table:: "E", "208000" "NAKED", "0.3" "G", "80000" "N", "10" "K", "25" "C", "14363" "R_0", "66,62" "Q", "11,43" "B", "2,1" "D", "494" The Mfront files defining the behavior are: MonoCrystal_ CFC .mfront C modeling: single crystal on an aggregate of 10 grains ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ This modeling makes it possible to validate the single-crystal elasto-visco-plastic model with implicit integration, and complete definition of the family of sliding systems and the interaction matrix, compared to model MONOCRISTAL on a 10-grain aggregate. The material coefficients are: .. csv-table:: "E", "210000" "NAKED", "0.3" "G", "80769.23" "N", "12" "K", "5" "C", "0" "R_0", "250" "Q", "55" "B", "12" "D", "0" The Mfront files defining the behavior are: MonoCrystal_ CFC .mfront Modeling D: polycrystal homogenized on 30 grains ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ This modeling makes it possible to validate the polycrystalline elasto-visco-plastic model with explicit integration, by comparison with model POLYCRISTAL on a hardware point with 30 grains. The material coefficients are: .. csv-table:: "E", "145200" "NAKED", "0.3" "G", "55846.15" "N", "10" "K", "40" "C", "0" "R_0", "75.5" "Q", "9.77" "B", "19.34" "D", "0" The Mfront files defining the behavior are: Polycrystal_mc.mfront Polycrystal_Orientation.mfront The "Polycrystal_Orientation.mfront" file defines 30 Euler angle triplets in degrees. E modeling: single crystal DD_CFC ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ This modeling makes it possible to validate the monocrystalline model DD_CFC on a hardware point, in comparison with MONO_DD_CFC. The material coefficients are: .. csv-table:: "E", "208000" "NAKED", "0.3" "G", "80000" "TAU_F ", "105" "Y", "2.5E-7" "N", "5" "GAMMA_0 ", "1.E-3" "A", "0.13" "B", "0.005" "RHOREF ", "1.E6" "ALPHA ", "0.35" "BETA ", "2,54E-7" "G", "80000" The initial dislocation density is 1.E6. The analytical solution is contained in the file mfron03e.30. The Mfront files defining the behavior are: MonoCrystal DDCFC .mfront MonoCrystal_ DD_CFC_InteractionMatrix .mfront F modeling: homogenized polycrystal of type DD_CFC on 30 grains ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ This modeling makes it possible to validate the homogenized polycrystalline model DD_CFC on a hardware point with 30 grains, in comparison with POLYCRISTAL. The material coefficients are: .. csv-table:: "E", "208000" "NAKED", "0.3" "G", "80000" "TAU_F ", "80" "Y", "2.5E-7" "N", "20" "GAMMA_0 ", "1.E-3" "A", "0.13" "B", "0.005" "RHOREF ", "1.E6" "ALPHA ", "0.35" "BETA ", "2,54E-7" "G", "80000" The initial dislocation density is 1.E5. The Mfront files defining the behavior are: PolyCrystal DDCFC .mfront MonoCrystal_ DD_CFC_InteractionMatrix .mfront The "Polycrystal_Orientation.mfront" file defines 30 Euler angle triplets in degrees. G modeling: single crystal DD_CFC_IRRA ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ This modeling makes it possible to validate the model DD_CFC_IRRA on a hardware point, in comparison with the behavior MONO_DD_CFC_IRRA. The material coefficients are: .. csv-table:: "E", "208000" "NAKED", "0.3" "G", "80000" "TAU_F ", "80" "Y", "2.5E-7" "N", "20" "GAMMA_0 ", "1.E-3" "A", "0.13" "B", "0.005" "RHOREF ", "1.E6" "ALPHA ", "0.35" "BETA ", "2,54E-7" "G", "80000" "ome_void", "1000," "PHI_LOOP ", "5,9E-6" "ALP_VOID ", "0" "ALP_LOOP ", "0,1" "ome_sat", "0" "PHI_SAT ", "4, E-2" "XI_IRRA ", "10" "DZ_IRRA ", "1, E7" The initial internal variables are: RHO_0 =1, E5 RHO_LOOPS =7, 4E13 PHI_VOIDS =1.e-3 The Mfront files defining the behavior are: Mono DDCFC_Irra .mfront MonoCrystal_ DD_CFC_InteractionMatrix .mfront H modeling: single crystal DD_CC ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ This modeling makes it possible to validate the DD_CCsur model at a hardware point, by comparison with the MONO_DD_CC behavior of the ssnd110b test. The material coefficients are: .. csv-table:: "E (GPa)", "236-0.0459* TEMP" "NAKED", "0.35" "G", "80000" "B", "2,48e-7" "GH", "1.e11" "DeltaG0", "0.84" "TAU_0 (MPa)", "363" "TAU_F ", "0" "gamma0", "1, e-6" "n", "50" "rho_ini", "1, E5*b**2" "D", "1.e-5" "d_lat", "1000." "y_at", "2.e-6" "K_f", "30," "K_self", "100" "k_boltz", "8.62E-5" "epsi_1", "3e-4" "G", "80000" "a_self", "0.1024" "a_coli", "0.7" "a_ncol", "0,1" The simulation temperature is 50 K. The initial dislocation density is 1.E5 (multiplied by BETA **2). The Mfront files defining the behavior are: MonoCrystal DDCC .mfront MonoCrystal_ DD_CC_InteractionMatrix .mfront MonoCrystal_ DD_CC_SlidingSystems .mfront The monocrystal is defined according to the -1,4,9 orientation. It is subject to an imposed deformation :math:`{\epsilon }_{\mathit{zz}}`. Modeling I: single crystal DD_CC_IRRA ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ This modeling makes it possible to validate model DD_CC_IRRA on a hardware point, by comparison with the MONO_DD_CC_IRRA behavior of the ssnd110d test. The material coefficients are: .. csv-table:: "E (GPa)", "236-0.0459* TEMP" "NAKED", "0.35" "G", "80000" "B", "2,48e-7" "GH", "1.e11" "DeltaG0", "0.84" "TAU_0 (MPa)", "363" "TAU_F ", "20" "gamma0", "1, e-3" "n", "20" "rho_ini", "1, E5*b**2" "D", "1.e-5" "d_lat", "1000." "y_at", "1.e-6" "K_f", "30," "K_self", "100" "k_boltz", "8.62E-5" "epsi_1", "1e-5" "G", "80000" "a_irr", "0.3" "xi_irr", "4" "a_self", "0.1024" "a_coli", "0.7" "a_ncol", "0,1" The simulation temperature is 250 K. The monocrystal is subjected to a tensile force imposed according to the orientation 1,5,9 The initial dislocation density is 1.E5 (multiplied by BETA **2). The Mfront files defining the behavior are: Mono DDCC_Irra .mfront MonoCrystal_ DD_CC_InteractionMatrix .mfront MonoCrystal_ DD_CC_SlidingSystems .mfront K modeling: homogenized polycrystal DD_CC ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ This modeling makes it possible to validate the homogenized polycrystalline model DD_CCsur a hardware point with 30 grains, by comparison with the POLYCRISTALdu ssnv194D test behavior. The material coefficients are: .. csv-table:: "E (GPa)", "236-0.0459* TEMP" "NAKED", "0.35" "G", "80000" "B", "2,48e-7" "GH", "1.e11" "DeltaG0", "0.84" "TAU_0 (MPa)", "363" "TAU_F ", "0" "gamma0", "1, e-6" "n", "50" "rho_ini", "1, E5*b**2" "D", "1.e-5" "d_lat", "1000." "y_at", "2.e-6" "K_f", "30," "K_self", "100" "k_boltz", "8.62E-5" "epsi_1", "3e-4" "G", "80000" "a_self", "0.1024" "a_coli", "0.7" "a_ncol", "0,1" The Mfront files defining the behavior are: PolyCrystal DDCC .mfront PolyCrystal_ DD_CC_SlidingSystems .mfront MonoCrystal_ DD_CC_InteractionMatrix .mfront