2. Reference solution#

2.1. Calculation method#

The reference results are either non-regression values (values of empirical modes, reduction coefficients) or values (displacements, temperatures, stresses and flows) calculated on a complete model.

Reduced coordinates are also tested. We recall that empirical trends \({\mathrm{\Psi }}_{m}(x)\) are such that:

(2.1)#\[ u (x, t)\ approx\ sum _ {m=1} ^ {\ mathit {nbmode}} {\ mathrm {\ Psi}} _ {m} (x)\ times {a} _ {m} (t)\]

For a given \(u(x,t)\) field (temperature, displacement, heat flow, or stress) with \({a}_{m}\) the reduced coordinates.

2.2. Reference quantities and results#

For thermal, the results on the complet model:

Location

Moment

Temperature ( TEMP )

Node A in \((\mathrm{1,0,3})\)

\(t=1s\)

\(\mathrm{29,9053048593}°C\)

Node A in \((\mathrm{1,0,3})\)

\(t=4s\)

\(\mathrm{139,462715634}°C\)

Node A in \((\mathrm{1,0,3})\)

\(t=7s\)

\(\mathrm{567,08693147}°C\)

Node A in \((\mathrm{1,0,3})\)

\(t=10s\)

\(\mathrm{999,349943608}°C\)

Node B in \((\mathrm{3,3,3})\)

\(t=1s\)

\(\mathrm{29,90499961}°C\)

Node B in \((\mathrm{3,3,3})\)

\(t=4s\)

\(\mathrm{139,458066818}°C\)

Node B in \((\mathrm{3,3,3})\)

\(t=7s\)

\(\mathrm{567,040457129}°C\)

Node B in \((\mathrm{3,3,3})\)

\(t=10s\)

\(\mathrm{999,12502482}°C\)

Location

Moment

Flow ( FLUX_NOEU )

Node A in \((\mathrm{1,0,3})\)

\(t=7s\)

\(-\mathrm{0,0005673343795326032}W\)

Node A in \((\mathrm{1,0,3})\)

\(t=10s\)

\(-\mathrm{0,003152488515227189}W\)

Node B in \((\mathrm{3,3,3})\)

\(t=7s\)

\(\mathrm{0,0011356797075429094}W\)

Node B in \((\mathrm{3,3,3})\)

\(t=10s\)

\(0.0063191212851786W\)

For mechanics, the results on the complet model:

Location

Moment

Component

Move ( DEPL )

Node A in \((\mathrm{1,0,3})\)

\(t=10s\)

DX

\(\mathrm{0,0696319525128}\,{mm}\)

Node A in \((\mathrm{1,0,3})\)

\(t=10s\)

DY

\(\mathrm{0,199062276741}\,{mm}\)

Node A in \((\mathrm{1,0,3})\)

\(t=10s\)

DZ

\(\mathrm{0,529606351907}\,{mm}\)

Node B in \((\mathrm{3,3,3})\)

\(t=10s\)

DX

\(-\mathrm{0,208992921588}\,{mm}\)

Node B in \((\mathrm{3,3,3})\)

\(t=10s\)

DY

\(-\mathrm{0,208992921588}\,{mm}\)

Node B in \((\mathrm{3,3,3})\)

\(t=10s\)

DZ

\(\mathrm{0,547254495773}\,{mm}\)

Location

Instant

Component

Constraint ( SIEF_NOEU )

Node A in \((\mathrm{1,0,3})\)

\(t=10s\)

SIXX

\(-\mathrm{2739,13961277}\,{MPa}\)

Node A in \((\mathrm{1,0,3})\)

\(t=10s\)

SIYY

\(-\mathrm{2737,51235419}\,{MPa}\)

Node A in \((\mathrm{1,0,3})\)

\(t=10s\)

SIZZ

\(-\mathrm{2612,22311229}\,{MPa}\)

Node C in \((\mathrm{0,0,0})\)

\(t=10s\)

SIXX

\(\mathrm{13992,3974341}\,{MPa}\)

Node C in \((\mathrm{0,0,0})\)

\(t=10s\)

SIYY

\(\mathrm{13992,3974341}\,{MPa}\)

Node C in \((\mathrm{0,0,0})\)

\(t=10s\)

SIZZ

\(\mathrm{14047,6477194}\,{MPa}\)

D knot in \((\mathrm{3,1,0})\)

\(t=10s\)

SIXX

\(\mathrm{13300,4780377}\,{MPa}\)

D knot in \((\mathrm{3,1,0})\)

\(t=10s\)

SIYY

\(\mathrm{13300,3220671}\,{MPa}\)

D knot in \((\mathrm{3,1,0})\)

\(t=10s\)

SIZZ

\(\mathrm{13368,1442621}\,{MPa}\)

2.3. Uncertainty about the solution#

The error in the solution depends on the degree of reduction (number of empirical modes and size of the reduced domain).