2. Benchmark solution#

2.1. Calculation method used for the reference solution#

Complex potential [bib1].

2.2. Benchmark results#

\(\begin{array}{c}\eta \mathrm{=}\frac{\mathrm{2a}}{W}\\ \beta \mathrm{=}\frac{L}{W}\\ {K}_{\mathit{II}}\mathrm{=}\frac{{\alpha }_{11}{T}_{0}}{{S}_{11}}\mathrm{\cdot }\sqrt{\frac{W}{2}}\mathrm{\cdot }{F}_{\mathit{II}}\end{array}\)

where the geometric correction factor \({F}_{\mathit{II}}\) is given as a function of \(\eta\) for each material, in the particular case \(\beta \mathrm{=}0.5\) on the curves below.

The isotropic material being represented by curve \(I\)

_images/10044E4A00001A2600001A5B9E7CCDA236A23B45.svg

2.3. Uncertainty about the solution#

Accuracy not defined.

2.4. Bibliographical references#

    1. MURAKAMI: Stress Intensity Factors Handbook, box 11.17, pages 1045-1047. The Society of Materials Science, Japan, Pergamon Press, 1987.