3. Modeling A#

3.1. Characteristics of modeling#

For this modeling, the 3 topological parameters of the crack block are:

  • \(\mathrm{NS}\): number of sectors on \(90°\)

  • \(\mathrm{NC}\): number of crowns

  • \(\mathrm{rt}\): the radius of the largest crown (with a: half length of the crack)

\(\mathit{NS}\mathrm{=}8\)

\(\mathit{NC}\mathrm{=}4\)

\(\mathit{rt}\mathrm{=}\mathrm{0,001}\mathrm{\times }a\)

The values of the upper and lower radii, to be specified in the CALC_G command, are:

Crown 1

Crown 2

Crown 3

Crown 3

Crown 4

Crown 5

Crown 6

\(\text{Rinf}\)

3,75E—5

7,500E—5

7,500E—5

1,500E—4

1,875E—4

2,250E—4

2,250E—4

\(\text{Rsup}\)

7,50E—5

1,125E—4

1,500E—4

1,875E—4

2,250E—4

3,000E—4

3,000E—4

3.2. Characteristics of the mesh#

Half-mesh; mesh radiating at the right end of the crack.

3831 knots,

1516 elements,

884 TRI6,

632 QUA8.

3.3. Quantities tested and results of modeling A#

Identification

Reference

Aster

% difference

\({K}_{\mathit{II}}\), crown #1

2.2347E+7

2.2814E+7

2.09

\({K}_{\mathit{II}}\), crown #2

2.2347E+7

2.2813E+7

2.08

\({K}_{\mathit{II}}\), crown #3

2,2347E+7

2,2814E+7

2,09

\({K}_{\mathit{II}}\), crown no. 4

2.2347E+7

2.2814E+7

2.09

\({K}_{\mathit{II}}\), crown no. 5

2,2347E+7

2,2817E+7

2,10

\({K}_{\mathit{II}}\), crown #6

2.2347E+7

2.2818E+7

2.11

\(G\), crown No. 1

2.4969E+3

2.5984E+3

4.07

\(G\), crown #2

2.4969E+3

2.5990E+3

4.09

\(G\), crown #3

2,4969E+3

2,5992E+3

4,10

\(G\), crown no. 4

2.4969E+3

2,5993E+3

4,10

\(G\), crown no. 5

2.4969E+3

2.6013E+3

4.18

\(G\), crown #6

2.4969E+3

2.5985E+3

4.07

3.4. notes#

In the reference, the author assumes \({K}_{I}\mathrm{=}0\), but he does not check it after the fact. In view of the deformations resulting from Code_Aster, the coefficient \({K}_{I}\) is different from zero, but it remains very low compared to \({K}_{\mathit{II}}\) (the crack slides more than it opens).

With regard to the energy return rate \(G\), if we assume that \({K}_{I}\mathrm{=}0\), we derive the reference value from the formula of IRWIN in plane constraints:

\({G}_{\mathit{ref}}\mathrm{=}(1\mathrm{/}E)\mathrm{\times }{K}_{\mathit{II}}^{2}\)