4. B modeling#

Modeling B corresponds to the case a/b = 0.01.

4.1. Characteristics of modeling#

_images/10005166000029570000290872590073BD5BE461.svg

Full mesh

_images/10004532000026C2000025B960DF6D62BFCC3611.svg

Zoom

_images/100025BA00002C2200001177EA2F86BAF4B15A5D.svg

Zoom of the crack point

4.2. Characteristics of the mesh#

2095 nodes and 680 elements including 640 QUA8 and 40 TRI6

4.3. Features tested#

In this test, the mechanical result post-processed by the operator CALC_G comes from a CREA_RESU. As this type of result contains only displacements and no constraints, it is necessary to calculate these constraints within the CALC_G operator from the displacement fields. This operation is carried out by choosing to calculate the option G_ EPSI.

4.4. Definition of crown radii#

Several successive pairs of radii for the lower and upper integration rings are retained. These rays should be specified in the CALC_G keyword factor THETA:

Crown No. 0

Crown No. 1

Crown No. 1

Crown No. 2

Crown No. 3

Crown No. 4

ring

1.E-6

1.5E-5

1.75E-5

2.E-5

2.25E-5

rsup

2.5E-5

1.75E-5

1.75E-5

2.25E-5

2.5E-5

2.5E-5

4.5. Reference solutions#

For an a/b ratio = 0.01 (and a = 2.5.10-5 m), the reference solution for KI is:

\({K}_{I}=0.9609\text{MPa}\cdot \sqrt{(\text{m})}\)

To calculate the energy return rate, we use the formulas of IRWIN in plane deformations:

\({G}_{\mathrm{réf}}=\frac{1-{\nu }^{2}}{E}({K}_{I}^{2}+{K}_{\mathrm{II}}^{2})\), with \({K}_{\mathrm{II}}^{2}=0\)

either:

\({G}_{\mathrm{réf}}=4.2019{\text{J.m}}^{-2}\)

4.6. Tested sizes and results#

Parameter

Unit

Option

Option

Crown

Aster

% Tolerance

G

J.m-1

G_ EPSI

crown No. 1

4.2019

4.1567

2

G

J.m-1

G_ EPSI

crown No. 2

4.2019

4.1554

2

G

J.m-1

G_ EPSI

crown No. 3

4.2019

4.1544

2

G

J.m-1

G_ EPSI

crown No. 4

4.2019

4.1554

2

K1

MPa .m-2

K

crown No. 0

0.9609

0.9653

2